

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO Asiago 2024

DSAM of ⁵⁶Ni

M. Balogh, F. Galtarossa, A. Gottardo

matus.balogh@lnl.infn.it

Physics motivation

N = Z = 28: the (not so) doubly-magic ⁵⁶Ni nucleus

E2 strengths

f_{7/2} occupation numbers GXPF1A - 8p-8h exc. allowed ⁵⁴Ni ⁵⁶Ni ⁵⁸Ni π: 7.4 π: 7.6 π: 7.4 0+ 0+ 0+ v: 5.6 v: 7.6 v: 7.7 π: 7.3 π: 6.8 π: 7.3 2_{1}^{+} 2₁⁺ 2_{1}^{+} v: 5.6 v: 7.6 v: 6.8 The 2⁺ is made The 2⁺ is made via p/nThe 2⁺ is made via neutrons in $f_{7/2}$, plus a excitations breaking via neutrons in small breaking of the N=28 the Z=N=28 core the space above N=28 core

Intermediate-energy Coulomb excitation

entangled nuclear and Coulomb contributions

low statistics

DSAM

feeding from upper state not determined

E2 strengths

f _{7/2} occupation numbers GXPF1A – 8p-8h exc. allowed			
	⁵⁴ Ni	⁵⁶ Ni	⁵⁸ Ni
0+	π: 7.4	π: 7.6 0 ⁺	π: 7.4 0 ⁺
	v: 5.6	v: 7.6	v: 7.7
2 ₁ +	π: 7.3	π: 6.8	π: 7.3
	v: 5.6	v: 6.8	v: 7.6
The 2 ⁺ is made via neutrons in f _{7/2} , plus a small breaking of the N=28 core		The 2 ⁺ is made via p/n excitations breaking the Z=N=28 core	The 2 ⁺ is made via neutrons in the space above N=28

Intermediate-energy Coulomb excitation

feeding from upper state not determined

DSAM

entangled nuclear and Coulomb contributions

low statistics

Shell model overestimates the B(E2)?

- wrongly modeled core-breaking?
- isospin symmetry breaking?

Mixing of deformed and spherical bands?

Rotational band identified at low E*, based on 4p-4h excitations in the pf shells, and reproduced by LSSM calculations.

D. Rudolph et al., Phys. Rev. Lett. 82 (1999) 3763

A strongly suppressed B(E2; $2_2^+ \rightarrow 0_1^+$), as predicted by GXPF1A, would imply no mixing between spherical and deformed configurations but difficult to account for the experimental BR.

A large B(E2; $2_2^+ \rightarrow 0_1^+$) of several W.u. would imply significant mixing between spherical and deformed configurations.

Experiment

Experiment

Experiment

Calibration(s)

Position calibration

E layer

128 pseudo-telescopes

Position calibration

Position calibration

...waiting for corrected coordinates

Energy calibration using 80, 70, 60, 55, 50 MeV beam on 100µg of ¹⁹⁷Au

- 2 energy calibration parameters for E and dE layers
- front dE dead layer thickness
- back dE + front E dead layer thickness

Energy calibration using 80, 70, 60, 55, 50 MeV beam on 100µg of ¹⁹⁷Au

- 2 energy calibration parameters for E and dE layers
- front dE dead layer thickness
- back dE + front E dead layer thickness

Minimization blocks

• same energy calibration parameters for same pad/strip

Energy calibration... difficulties

Radiation induced channeling effect?

m_EdE_blu_t0_p0s15

Energy calibration... difficulties

Gain drift during calibration...

m_sume15_blu_t9_p2s6

Timestamp [arb]

Energy calibration... difficulties

In-run drifting dE-E coincidence window

Timestamp [arb]

Questions?

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO