Study of the 85gKr(d,py) reaction for astrophysics at ANL

Friday, 21 June 2024 14:40 (20 minutes)

About 50% of the elements heavier than iron are produced in the so-called s-process, where the lifetime for neutron capture of the nuclei involved is typically longer than their β -decay lifetimes. In the modeling of the s-process, great uncertainty derives from the competition between neutron capture and β -decay, in particular in some isotopes called "branching points". ⁸⁵Kr is an important branching point of the s-process, that influences both the ⁸⁶Kr/⁸²Kr ratio in presolar grains and the abundances of heavy Sr isotopes that are produced also by r-process. A better understanding of this branching point can be achieved only if the neutron capture cross section on ⁸⁵Kr is sufficiently well constrained, but a direct measurement of this cross section is extremely complicated due to the radioactivity of the sample.

The (d,p γ) reaction has been demonstrated to be a reliable indirect probe of the (n, γ)-reaction cross section, and ⁸⁵Kr can be accelerated as a pure beam. For this reason, the ⁸⁵Kr(d,p γ)⁸⁶Kr reaction has been carried out at 10 MeV/u in inverse kinematics at Argonne's ATLAS facility using the HELIOS spectrometer and the Apollo array. Excited state at energies from around 2-14 MeV in ⁸⁶Kr were populated, where S_n=9.86 MeV, with a Q-value resolution of about 150 keV. The 2⁺ \rightarrow 0⁺ and 4⁺ \rightarrow 2⁺ γ -rays are clearly observed, from which the γ -ray emission probabilities as a function of excitation energy [P_p(E_{ex})] can be determined. P_p shows the characteristic behaviour with a constant value below S_n and a decrease at higher excitation energies. These data are used to extract the cross sections for ⁸⁵Kr(n, γ) reaction, complementing recent direct, highprecision measurements on the stable Kr isotopes. The technique has significant potential for future indirect (n, γ)-reaction studies.

Primary author: CAROLLO, Sara (Istituto Nazionale di Fisica Nucleare)

Presenter: CAROLLO, Sara (Istituto Nazionale di Fisica Nucleare)

Session Classification: On-going analysis