

Study of the 85g Kr(d,p γ) reaction for astrophysics at ANL

Sara Carollo University and INFN Padova

Young GAMMA meeting - June 21st 2024

Motivation

- 50% of elements heavier than Fe are produced by the s-process: $\tau_{\beta} \lesssim \tau_{n}$
- Great uncertainty derives from the competition between n-capture and β-decay in some isotopes called **branching points**
- ⁸⁵Kr is an important branching point of the s-process, that influences:
 - ⁸⁶Kr/⁸²Kr ratio in **presolar grains**
 - Abundances of heavy Sr isotopes that are produced also by r-process (lines in kilonova)

Proton number

Surrogate reaction method: (n,γ) from $(d,p\gamma)$

⁸⁵Kr activity is too high to perform activation or ToF measurement \rightarrow Surrogate reaction method (d,pγ) can be performed in inverse kinematics \rightarrow ⁸⁵Kr as beam \rightarrow ≥99% purity!

J. E. Escher et al., Phys. Rev. Lett. 121, 052501 (2018) A. Ratkiewicz et al. Phys. Rev. Lett. 122, 052502 (2019)

Experimental set-up

Reaction: ⁸⁵Kr(d,py)

Beam: ⁸⁵Kr 10 MeV/u, 10⁷ pps

Targets: CD₂

HELIOS: Solenoidal magnetic spectrometer with B=2.0 T

For **protons**: position sensitive Si array

For **y-rays**: Apollo scintillator array, 5 LaBr + 15 CsI

Experimental set-up

Target-array (1st) distance = 100 mm

Q-value=7.63 MeV

HELIOS: Helical Orbit Spectrometer

Solves the problem of kinematic compression!

B. P. Kay et al. 2012 J. Phys.: Conf. Ser. 381 012095

Analysis: C subtraction

Heavy recoils \rightarrow can't use recoil detector \rightarrow Need a run with C target to subtract 2 factors: for p only and for p-y coincidences

Only protons

p-y coincidences

Analysis: ⁸⁶Kr excitation energy spectrum

Analysis: angular distributions

Without y coincidence

Analysis: 2nd array position

Target-array distance = 500 mm

Target-array distance = 100 mm

Analysis: 2nd array position

Without y coincidence

Analysis: γ spectrum

Coincidence probability estimation

J. Escher et al. EPJ Web of Conferences 122, 12001 (2016)

Conclusion

- Coincidence between protons and ys observed
- C subtraction

1

• First estimation of coincidence probability

Next steps:

- 4⁺ is an isomer ($T_{1/2}$ =3.1 ns) \rightarrow need a simulation
- (n,y) conversion

Thank you for your attention!

S. Carollo^{1,2}, N. Watwood³, B. P. Kay³, F. Recchia^{1,2}, G. de Angelis⁴, P. Aguilera^{1,2}, M. L. Avila³, J. Benito Garcia², K. Bhatt³, D. Brugnara⁴, K. A. Chipps⁵, A. Couture⁶, S. Dutta⁷, A. Ertoprak⁴,
R. Escudeiro^{1,2}, S. J. Freeman^{8,9}, F. Galtarossa², B. Gongora Servin^{4,10}, A. Gottardo⁴, A. Hall-Smith^{3,11}, J. Henderson¹², C. Hoffman³, R. O. Hughes¹³, H. Jayatissa⁶, S. M. Lenzi^{1,2}, D. Mengoni^{1,2},
M. R. Mumpower⁶, W. J. Ong¹³, M. Paul¹⁴, J. Pellumaj^{4,10}, R. M. Perez Vidal^{4,15}, S. Pigliapoco^{1,2},
A. Ratkiewicz¹³, K. Rezynkina², D. K. Sharp⁹, Y. Sun⁷, T. L. Tang¹⁶, I. A. Tolstukhin³, M. Williams¹³.