

Gamma-Ray Spectroscopy Following Beta-Decay of ISOL Beams: **Present at TRIUMF and Future at SPES**

Marco Rocchini **INFN - Istituto Nazionale di Fisica Nucleare** FIRENZE DIVISION

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: Iols & r-Process

SPES

SPES β-Decay Station

TRIUMF Laboratories

TRIUMF ISAC

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

RIUMF

TRIUMF Laboratories

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

TRIUMF ISAC

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPE S:03 РМ

TRIUMF Labs

Google Maps

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with GRIFFIN

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β -Decay Station

TRIUMF Laboratories

TRIUMF ISAC ME A Wesbrook Mali couver, B.C. NADA V6T 2A3

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Young GAMMAs Meeting, 21-22 June 2024, Asiago (Italy)

Young GAMMAs Meeting, 21-22 June 2024, Asiago (Italy)

Gamma-ray spectroscopy following beta-decay

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
 - ► ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
 - ISAC-II \Rightarrow Post-accelerated beams (up to ~10 MeV/A) \Rightarrow TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

Gamma-ray spectroscopy following beta-decay

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
 - ► ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
 - ISAC-II \Rightarrow Post-accelerated beams (up to ~10 MeV/A) \Rightarrow TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

Gamma-ray spectroscopy following beta-decay

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
 - ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
 - ISAC-II \Rightarrow Post-accelerated beams (up to ~10 MeV/A) \Rightarrow TIGRESS
- **GRIFFIN** (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

GRIFFIN

EMMA

TIGRESS

Gamma-ray spectroscopy following betadecay of ISOL beams: TRIUMF and SPES

Y-Y Angular Correlations

- **γ-γ Angular Correlations with GRIFFIN:** J.K. Smith et al., NIMA 922, 47 (2019)
 - Rhombicuboctahedron geometry \Rightarrow Up to 52 opening angles

- ► Event mixing technique ⇒ No need to know # of pairs for each opening angle and relative efficiencies of the detectors
- Finite sizes of the detectors \Rightarrow Detailed GEANT4 simulations
- Definitive spin assignments at the 99% CL

INFN

Florence Activities with GRIFFIN

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

P.E. Garrett et al., Phys. Rev. Lett. 123 (2019) 142502

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Marco Rocchini

120

Neutron Number N

Florence Activities with GRIFFIN

GRIFFIN γ-Ray Spectrometer γ-γ Angular Correlations with **GRIFFIN** GAMMA & GRIFFIN 3 lols & r-Process Juclear Structure from Second Edition **BICHARD F. CASTEN** SPES β-Decay

TRIUMF Labs

⁷⁴Zn:

SPES

Station

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Influence of the nuclear shape on $0\nu\beta\beta$ decay

Triaxiality in radioactive nucle

Florence Activities with GRIFFIN

GRIFFIN γ-Ray Spectrometer γ-γ Angular Correlations with **GRIFFIN** GAMMA & GRIFFIN 3 lols & r-Process Juclear Structure from Second Edition **BICHARD F. CASTEN** SPES β-Decay

TRIUMF Labs

⁷⁴Zn:

SPES

Station

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

⁷⁴Zn:

SPES

Station

Florence Activities with GRIFFIN

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

⁷⁴Zn:

SPES

Station

Florence Activities with GRIFFIN

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Islands of Inve

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

lols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical mean-field gaps, leading to the appearance of unexpected deformed ground states

Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence

4 lols identified: N = 8, 20,28, 40

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

											⁶³ Se		⁶⁵ Se	⁶⁶ Se	⁶⁷ Se	⁶⁸ Se	⁶⁹ Se	⁷⁰ Se	⁷¹ Se	⁷² Se	⁷³ Se	⁷⁴ Se	⁷⁵ Se	760											
													⁶⁴ As	⁶⁵ As	⁶⁶ As	⁶⁷ As	⁶⁸ As	⁶⁹ As	⁷⁰ As	⁷¹ As	⁷² As	⁷³ As	⁷⁴ As		and the second		1								in the second
									⁵⁹ Ge	60Ge	⁶¹ Ge	⁶² Ge	⁶³ Ge	⁶⁴ Ge	⁶⁵ Ge	66Ge	⁶⁷ Ge	⁶⁸ Ge	⁶⁹ Ge	™Ge	⁷¹ Ge	⁷² Ge	⁷³ Ge	-		-tatul	A.		初				24	N. FILM	A
											60Ga	⁶¹ Ga	⁶² Ga	⁶³ Ga	⁶⁴ Ga	⁶⁵ Ga	⁶⁶ Ga	⁶⁷ Ga	⁶⁸ Ga	⁶⁹ Ga	™Ga	71Ga	⁷² Ga	73 G				66 (K)		N No	AN			X	
						⁵⁴ Zn	⁵⁵ Zn	⁵⁶ Zn	⁵⁷ Zn	⁵⁸ Zn	⁵⁹ Zn	⁶⁰ Zn	⁶¹ Zn	⁶² Zn	⁶³ Zn	^{6₄} Zn	⁶⁵ Zn	⁶⁶ Zn	⁶⁷ Zn	⁶⁸ Zn	⁶⁹ Zn	^{7₀} Zn	⁷¹ Zn	⁷² Zn	⁷³ Zn							W.	-		
								⁵⁵ Cu	⁵⁶ Cu	⁵⁷ Cu	⁵⁸ Cu	⁵⁹ Cu	⁶⁰ Cu	⁶¹ Cu	⁶² Cu	⁶³ Cu	⁶⁴ Cu	⁵5Cu	⁶⁶ Cu	⁶⁷ Cu	⁶⁸ Cu	69Cu	⁷⁰ Cu	⁷¹ Cu	⁷² Cu	⁷³ Cu ⁷⁴	Cu								-
	4	¹⁸ Ni	⁴⁹ Ni	⁵⁰ Ni	⁵¹ Ni	⁵² Ni	⁵³ Ni	⁵⁴ Ni	⁵⁵ Ni	⁵⁶ Ni	⁵⁷ Ni	⁵⁸ Ni	⁵⁹ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Ni	⁶⁴ Ni	⁶⁵ Ni	⁶⁶ Ni	⁶⁷ Ni	⁶⁸ Ni	⁶⁹ Ni	⁷⁰ Ni	⁷¹ Ni	72 Ni 73	³Ni ∛	⁷⁴ Ni	⁷⁵ Ni	⁷⁶ Ni	⁷⁷ Ni	⁷⁸ Ni	⁷⁹ Ni	⁸⁰ Ni	
					⁵⁰ Cc	51 C O	⁵² Co	⁵³ Co	⁵⁴ Co	⁵⁵ Co	⁵⁶ Co	57 C 0	⁵⁸ Co	⁵⁰Co	⁶⁰ Co	⁶¹ Co	⁶² Co	⁶³ Co	⁶⁴ Co	⁶⁵ Co	⁶⁶ Co	⁶⁷ Co	⁶⁸ Co	⁶⁹ Co	⁷⁰ Co	⁷¹ Co ⁷²	2 Co 7	⁷³ Co	[≁] 4Co	⁷⁵ Cc	⁷⁶ Co	77 C o			
45 F	-e 4	₅Fe	⁴⁷ Fe	⁴⁸ Fe	⁴⁹ Fe	⁵⁰ Fe	⁵¹ Fe	⁵² Fe	⁵³ Fe	⁵⁴Fe	⁵⁵ Fe	⁵⁶ Fe	⁵7Fe	⁵8Fe	⁵⁹ Fe	⁶⁰ Fe	⁶¹ Fe	⁶² Fe	⁶³ Fe	⁶⁴ Fe	⁶⁵ Fe	⁶⁶ Fe	⁶⁷ Fe	⁶⁸ Fe	⁶⁹ Fe	⁷⁰ Fe ⁷¹	'Fe 7	⁷² Fe	⁷³ Fe	74Fe		r.			
			^{₄6} Mr	⁴⁷ Mr	ո ^₄ 8Mr	n ^{₄9} Mn	n ⁵⁰Mn	⁵¹ Mn	⁵² Mn	53Mn	⁵⁴Mn	⁵⁵Mn	<u>₅</u> 6Mn	⁵⁷ Mn	⁵⁸ Mn	^{₅9} Mn	⁶⁰ Mn	⁵¹Mn	⁶² Mn	⁶³ Mn	⁶⁴ Mn	⁶⁵ Mn	⁶⁶ Mn	^{፩7} Mn	³⁸ Mn	⁵⁹ Mn ⁷⁰	Mn	•			/				
⁴² Cr ⁴³ C	Cr 4	₄Cr	⁴⁵ Cr	∙ ₄6Cr	⁴⁷ Cr	⁴⁸ Cr	⁴⁹ Cr	⁵⁰Cr	⁵¹ Cr	⁵²Cr	⁵³Cr	⁵⁴Cr	⁵⁵ Cr	⁵⁶ Cr	⁵⁷ Cr	⁵⁸ Cr	⁵⁹ Cr	⁶⁰ Cr	⁶¹ Cr	⁶² Gr	⁶³ Cr	64Cr	⁶⁵ Cr	⁶⁶ Cr					••		•••				
	2	43 V	44 V	45 V	46 V	47 V	48 V	49V	50 V	51 V	52 V	53 V	54 V	55 V	56 V	57 V	58 V	59 V	60 V	61 \/ •	62 V	63V	64 V					N			5(
40 Ti 41 ⁻	Ti 4	₄2 Ti	⁴³ Ti	⁴⁴ Ti	45 Ti	46 T i	47 T i	48 Ti	⁴⁹ Ti	⁵⁰ Ti	51 Ti	52 Ti	⁵³ Ti	⁵⁴ Ti	55 Ti	56 Ti	57 Ti	⁵⁸ Ti	⁵⁹ Ti	⁶⁰ Ti	61 Ti		•••								SU				
³⁹ Sc ⁴⁰ S		1Sc	42 S C	⁴³ Sc	44Sc	45SC	⁴⁶ Sc	47Sc	⁴⁸ Sc	⁴⁹ Sc	⁵⁰ Sc	⁵¹ Sc	⁵² Sc	⁵³ Sc	⁵⁴ Sc	55Sc	⁵⁶ Sc	⁵⁷ Sc	⁵⁸ Sc				ЛС								-				
³⁸ Ca ³⁹ C	ca f	°Ca	41 C a	42Ca	⁴³ Ca	44Ca	⁴⁵ Ca	46Ca	47 C a	⁴⁸ Ca	⁴⁹ Ca	⁵⁰ Ca	51Ca	⁵² Ca	⁵³ Ca	⁵⁴ Ca	55Ca	⁵⁶ Ca					4(
37 🖌 38		391	40 🖌	41 K	42	43 🖌	44 K	45 🖌	46 K	47 K	481	49 K	50 K	51 K	52 K	531	54 K	ou					-												
36 A r 37 /		8 . r	39 A r	40 A r	41 A r	42 A r	43 A r	44 A r	45 A r	46 A r	47 A r	48 A r	49 A r	50 A r	1	1																			
				39CI										~~ A I																					
					^{-∞} Ci		℃I	-°Ci																											
³⁴ 5 ³³		°5	5°5	500 07D	39 O	400 00 00	40D	**S	40D		405	402																							
³³ P ³⁴		°.⊳.	30P	37P	38P	39P	40P	41P	42P	43P	⁴⁴ P	•																							
³² Si ³³ S	51 ³	³⁴ Si	³⁵ SI	³⁶ Si	37SI	³⁸ Si	³⁹ Si	⁴⁰ SI	41SI	4251		:																							
³¹ Al ³²	4 ³	³³ AI	³⁴ AI	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI	³⁹ AP	•.			•																							
³⁰ MG ³¹ N	/lg 32	²Mg	³³ Mc	g³⁴Mg	g ³⁵ Mg	9 ³⁶ Mg	J	³⁸ Ma																											
²⁹ №a ³⁰ №	Ja ^a	¹ Na	³² Na	a ³³Na ●	ι ³⁴ Na	ι ³⁵ Na	L		N	=	2	8																							
²⁸ Ne ²⁹ N	le ³⁰	⁰Ne	³¹ Ne	e ^{≉₂} Ne	;				-																										
27 F 2 8	F1	29 F 9	-																																
26			2	0																															

Islands of Inversion

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

- lols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical mean-field gaps, leading to the appearance of unexpected deformed ground states
- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 lols identified: N = 8, 20,28, 40

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

³¹ AI ³² AI ³³ AI ³⁴ AI ³⁵ AI ³³ ³⁰ Mg ³¹ Mg ³² Mg ³³ Mg ³⁴ Mg ³	³⁶ Al ³⁷ Al ³⁸ Al ³⁹ Al ³⁹ Al ³⁸ Mg	The search for the b	ounda	ries of the lols
²⁹ Na ³⁰ Na ³¹ Na ³² Na ³³ Na ²⁸ Ne ²⁹ Ne ³⁰ Ne ³¹ Ne ³² Ne ²⁷ F ²⁸ F ²⁰ F ²⁶ N = 20	ELSEVIER	Physics Letters B 772 (2017) 529–533 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb	PHYSICS LETTERS B	2 1 N=20 N=21
	Northern bo R. Han ^a , X.Q. Li Y.L. Ye ^a , J. Li ^a , Z C.G. Wang ^a , H.Y S.D. Chen ^a , Q. L Z. Bai ^c , M.R. Hu W.L. Zhan ^c	undary of the "island of inversion" and triaxiality in ³⁴ Si ^{a,1} , W.G. Jiang ^a , Z.H. Li ^{a,*} , H. Hua ^{a,*} , S.Q. Zhang ^a , C.X. Yuan ^b , D.X. Jiang ^a , Z.H. Li ^a , F.R. Xu ^a , Q.B. Chen ^a , J. Meng ^a , J.S. Wang ^c , C. Xu ^a , Y.L. Sun ^a , Z. Wu ^a , C.Y. Niu ^a , C.G. Li ^a , C. He ^a , W. Jiang ^a , P.J. Li ^a , H.L. Zang ^a , J. Feng ^a , iu ^a , X.C. Chen ^a , H.S. Xu ^c , Z.G. Hu ^c , Y.Y. Yang ^c , P. Ma ^c , J.B. Ma ^c , S.L. Jin ^c , ang ^c , Y.J. Zhou ^c , W.H. Ma ^c , Y. Li ^c , X.H. Zhou ^c , Y.H. Zhang ^c , G.Q. Xiao ^c ,	CrossMark	

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

lols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical mean-field gaps, leading to the appearance of unexpected deformed ground states

Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence

4 lols identified: N = 8, 20,28, 40

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Islands of Inversion

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

- lols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical mean-field gaps, leading to the appearance of unexpected deformed ground states
- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 lols identified: N = 8, 20,28, 40

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

investigating cc energies and phenomena suc deformation an shape coexister

4 lols identified: N = 8, 20,28, 40

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Our Experiment on ⁷⁴Zn with GRIFFIN

- ⁷⁴Zn via ⁷⁴Cu β-decay [$T_{1/2} = 1.63(5)$ s], Beam intensity $\approx 1.5 \cdot 10^3$ pps
- GRIFFIN: 12 of 16 available clovers at 14.5 cm from the target
 - $\epsilon_{\rm Y}(1332.5 \text{ keV}) = 7.8\%, \epsilon_{\rm Y}(300 \text{ keV}) = 16.6\%$
 - P/T (addback + BGO suppressors) = 45.5%
- Tape cycle: 5 T_{1/2} on, 1 s off, 0.5 s background, 1 s tape movement

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Y-Y Angular Correlations: the (0₂+)

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

The state at 1789 keV is firmly established as the first excited 0⁺ state

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

- New, definitive spin assignment for:
 - \triangleright 2₂⁺, 0₂⁺, 3₁⁺, 2₃⁺ states
- Two new transitions:
 - $2_{3^+} \longrightarrow 4_{1^+} \text{ and } 2_{3^+} \longrightarrow 0_{2^+}$
- From measured branching ratios and $\delta(E2/M1)$ mixing ratios \Rightarrow Relative B(E2) values

Strong transitions observed, indicative of band structures at low-spin in ⁷⁴Zn

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Experimental Results in a Nutshell

Calculated Shapes from Shell Model

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

- The experimental results triggered new developments in state-of-the-art shell model calculations (LSSM, Large-Scale Shell Model by Silvia Lenzi, Frédéric Nowacki, Duc₂₊ D. Dao)
- The calculations reproduce well the results
- For the first time with this approach, shapes of q_1^{round} and excited states have been extracted

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Calculated Shapes from Shell Model

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

- D. Dao)

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

Calculated Shapes from Shell Model

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: **Iols & r-Process**

SPES

SPES β-Decay Station

- The experimental results triggered new developments in state-of-the-art shell model calculations (LSSM, Large-Scale Shell Model by Silvia Lenzi, Frédéric Nowacki, $I \circ Strong 2_{3^+} \rightarrow 0_{2^+} \Rightarrow$ Hint of Configuration Coexistence D. Dao)
- The calculations reproduce well the results

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

0.1

0.1 0.2 0.3

²¹_{0 β}

- 2439 2322
- Strong $3_1^+ \rightarrow 2_2^+ \Rightarrow$ Hint of a quasi γ -band at low excitation energy and Triaxiality
- New Large-Scale Shell-Model calculations support this interpretation
- Inversion of "normal" and intruder configurations \rightarrow ⁷⁴Zn seems to be in the N = 40 Island of Inversion, which extends further north in the chart of the nuclides

PHYSICAL REVIEW LETTERS 130, 122502 (2023)

First Evidence of Axial Shape Asymmetry and Configuration Coexistence in ⁷⁴Zn: Suggestion for a Northern Extension of the N = 40 Island of Inversion

M. Rocchini[®],^{1,*} P. E. Garrett[®],¹ M. Zielińska[®],² S. M. Lenzi[®],^{3,4} D. D. Dao[®],⁵ F. Nowacki,⁵ V. Bildstein,¹ A. D. MacLean,¹ B. Olaizola⁽⁰⁾,^{6,†} Z. T. Ahmed,¹ C. Andreoiu⁽⁰⁾,⁷ A. Babu,⁶ G. C. Ball,⁶ S. S. Bhattacharjee,^{6,‡} H. Bidaman,¹ C. Cheng,⁶ R. Coleman,¹ I. Dillmann¹,^{6,8} A. B. Garnsworthy,⁶ S. Gillespie,⁶ C. J. Griffin¹,⁶ G. F. Grinyer¹,⁹ G. Hackman,⁶ M. Hanley^(D),¹⁰ A. Illana^(D),¹¹ S. Jones,¹² A. T. Laffoley,¹ K. G. Leach^(D),¹⁰ R. S. Lubna,^{6,§} J. McAfee,^{6,13} C. Natzke,^{6,10} S. Pannu,¹ C. Paxman[®],^{6,13} C. Porzio[®],^{6,14,15,||} A. J. Radich,¹ M. M. Rajabali,¹⁶ F. Sarazin[®],¹⁰ K. Schwarz,⁶ S. Shadrick,¹⁰ S. Sharma,⁹ J. Suh,⁹ C. E. Svensson,¹ D. Yates[®],^{6,17} and T. Zidar¹

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: Iols & r-Process

SPES

SPES β-Decay Station

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Marco Rocchini

SPES @LNL

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: Iols & r-Process

SPES

SPES β-Decay Station

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Marco Rocchini

SPES @LNL

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Marco Rocchini

β-Decay Station @ SPES

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: lols & r-Process

SPES

SPES β-Decay Station

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

β-Decay Station @ SPES

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer

γ-γ Angular Correlations with **GRIFFIN**

GAMMA & GRIFFIN

⁷⁴Zn: Iols & r-Process

SPES

SPES β-Decay Station

Young GAMMAs Meeting, 21-22 June 2024, Osservatorio Astrofisico di Asiago (Italy)

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

N. Marchini, A. Nannini at al., Nuclear Inst. and Methods in Physics Research, A 1020 (2021) 165860

DODED

LITANI

Thank you for the attention

Marco Rocchini **INFN - Istituto Nazionale di Fisica Nucleare** FIRENZE DIVISION

Next GOSIA school in Florence (tentatively scheduled at the end of January 2025)

