INFN

Marco Rocchini

INFN - Istituto Nazionale di Fisica Nucleare FIRENZE DIVISION

Gamma-Ray Spectroscopy Following Beta-Decay of ISOL Beams: Present at TRIUMF and Future at SPES

TRIUMF Laboratories

TRIUMF Labs
GRIFFIN Y-Ray
Spectrometer
Y-Y Angular
Correlations
with GRIFFIN
GAMMA \&
GRIFFIN
74Zn:
IoIs \& r-Process
SPES
SPES β-Decay
Station

TRIUMF Laboratories

TRIUMF Labs
GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

TRIUMF Laboratories

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay Station

INFN

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}$) \Rightarrow TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices
- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

GRIFPIN: A.B. Garnsworthy et al. NIMA 918, 9 (2019)

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

EMM

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- \quad SAC-I \Rightarrow Non-reaccelerated beams $(20-40 \mathrm{keV}) \Rightarrow$ GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

EMM GRIFFIN @TRIUMF

- ISAC-I \Rightarrow Non-reaccelerated beams (20-40 keV) \Rightarrow GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS

$Y-Y$ Angular Correlations

- $\quad \gamma-\gamma$ Angular Correlations with GRIFFIN:
J.K. Smith et al., NIMA 922, 47 (2019)
- Rhombicuboctahedron geometry \Rightarrow Up to 52 opening angles

- Event mixing technique \Rightarrow No need to know \# of pairs for each opening angle and relative efficiencies of the detectors
- Finite sizes of the detectors \Rightarrow Detailed GEANT4 simulations
- Definitive spin assignments at the 99% CL

Florence Activities with GRIFFIN

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay Station

1 Quantum-phase transition in the Zr isotopes
Neutron Number

3 The downfall of low-energy vibrations in nuclei

P.E. Garrett et al., Phys. Rev. Lett. 123 (2019) 142502

2 Influence of the nuclear shape on $0 v \beta \beta$ decay

Triaxiality in radioactive nuclei \& the r-process

Florence Activities with GRIFFIN

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay Station

1
Quantum-phase transition in the Zr isotopes
Neutron Number

Experiment on ${ }^{96} \mathrm{Zr}$ performed one year ago Spokespersons: M. Rocchini, P. Garrett, M. Zielinska

3 The downfall of low-energy vibrations in nuclei

P.E. Garrett et al., Phys. Rev. Lett. 123 (2019) 142502

2 Influence of the nuclear shape on $0 v \beta \beta$ decay

Triaxiality in radioactive nuclei \& the r-process

Florence Activities with GRIFFIN

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay Station

1 Quantum-phase transition in the Zr isotopes
Neutron Number

Experiment on ${ }^{96} \mathrm{Zr}$ performed one year ago Spokespersons: M. Rocchini, P. Garrett, M. Zielinska

3 The downfall of low-energy vibrations in nuclei

P.E. Garrett et al., Phys. Rev. Lett. 123 (2019) 142502

2 Influence of the nuclear shape on $0 v \beta \beta$ decay

Triaxiality in radioactive nuclei \& the r-process

Florence Activities with GRIFFIN

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74Zn:
lols \& r-Process

SPES

SPES β-Decay Station

Quantum-phase transition in the Zr isotopes Neutron Number

50	52	54	56	58	60	62	64	66	68	70

Experiment on 96 Zr performed one year ago Spokespersons: M. Rocchini, P. Garrett, M. Zielinska

3 The downfall of low-energy vibrations in nuclei

2 Influence of the nuclear shape on $0 v \beta \beta$ decay

Triaxiality in radioactive nuclei \& the r-process

Florence Activities with GRIFFIN

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74Zn:
lols \& r-Process

SPES

SPES β-Decay Station

Quantum-phase transition in the Zr isotopes Neutron Number $\begin{array}{lllllllllll}50 & 52 & 54 & 56 & 58 & 60 & 62 & 64 & 66 & 68 & 70\end{array}$ 2.5 Zirconium Isotopes | O | spherical |
| :---: | :---: |
| 8 | |
| 8 proate | |

Experiment on 96 Zr performed one year ago Spokespersons: M. Rocchini, P. Garrett, M. Zielinska

3 The downfall of low-energy vibrations in nuclei

2 Influence of the nuclear shape on $0 v \beta \beta$ decay

Triaxiality in radioactive nuclei \& the r-process

120 P. Möller et al., Phys. Rev. Lett. 97 (2006) 162502
Experiment on 74 Zn published, beam development for more exotic Cu beam accepted (highest priority)

- M. Rocchini et al., Physics Review Letters 130 (2023) 122502
- Spokespersons Lol: M. Rocchini, B. Olaizola, A. Illana

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPEC

Islands of Inversion

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$Y-Y$ Angular
Correlations
with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay Station

- Iols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical mean-field gaps, leading to the appearance of unexpected deformed ground states
- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPEC

Islands of Inversion

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay Station

- Iols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical mean-field gaps, leading to the appearance of unexpected deformed ground states
- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 lols identified: $\mathrm{N}=8,20$, 28, 40

${ }^{39}$ ELSEVIER

\because ScienceDirect
Physics Leters B 6 688 (2008) 203-208

g factor of the exotic $N=21$ isotope ${ }^{34} \mathrm{Al}$: probing the $N=20$ and $N=28$ shell gaps at the border of the "island of inversion"
P. Himpe ${ }^{\text {a }}$, G. Neyens ${ }^{\text {a,* }, ~ D . L . ~ B a l a b a n s k i ~}{ }^{\text {b }}$, G. Bélier ${ }^{\text {c }}$, J.M. Daugas ${ }^{\text {c }}$, F. de Oliveira Santos ${ }^{\text {d }}$, M. De Rydt ${ }^{a}$, K.T. Flanagan ${ }^{\text {a }}$, I. Matea ${ }^{e}$, P. Morel ${ }^{\text {c }}$, Yu.E. Penionzhkevich ${ }^{f}$, L. Perrot ${ }^{d}$,
 Y. Utsuno ${ }^{\text {h }}$, T. Otsuka ${ }^{\text {i.j }}$

The search for the boundaries of the lols

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPEC

Islands of Inversion

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay Station

- Iols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical mean-field gaps, leading to the appearance of unexpected deformed ground states
- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 lols identified: $\mathrm{N}=8,20$, 28, 40

Shape Coexistence is often observed at the borders of the lols, with inversions of "normal" and intruder configurations

T. Kröll and K. Wimmer, CERN Courier - Strong Interactions (Feature), ISOLDE explores the Island of Inversion

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPEC

Islands of Inversion

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay Station

- Iols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical mean-field gaps, leading to the appearance of unexpected deformed ground states
- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 lols identified: $\mathrm{N}=8,20$, 28, 40

${ }^{22} \mathrm{Ar}{ }^{32} \mathrm{Ar}{ }^{3} \mathrm{Ar}$ r ${ }^{32 \mathrm{Ar}}{ }^{33 \mathrm{Ar}}{ }^{33} \mathrm{Ar}{ }^{35} \mathrm{Ar}$

Where is the northern boundary of the $N=40$ lol?

Summit of the $\mathrm{N}=40$ island of inversion: Precision mass measurements and ab initio calculations of neutron-rich chromium isotopes
R. Silwal ${ }^{\text {a,b,* }}$, C. Andreoiu ${ }^{\text {c }}$, B. Ashrafkhani ${ }^{\text {d }}$, J. Bergmann ${ }^{\text {e }}$, T. Brunner ${ }^{\text {f }}$, J. Cardona ${ }^{\text {a,g }}$ K. Dietrich ${ }^{\mathrm{a}, \mathrm{h}}$, E. Dunling ${ }^{\mathrm{a}, \mathrm{i}}$, G. Gwinner ${ }^{\mathrm{g}}$, Z. Hockenbery ${ }^{\text {a,f }, \text { J.D. Holt }}{ }^{\mathrm{a}, \mathrm{f}}$, C. Izzo ${ }^{\mathrm{a}}$, A. Jacobs ${ }^{\text {a,j }}$, A. Javaji ${ }^{\text {a,j }}$, B. Kootte ${ }^{\mathrm{a}, \mathrm{g}}$, Y. Lan ${ }^{\mathrm{a}, \mathrm{j}}$, D. Lunney ${ }^{\mathrm{k}}$, E.M. Lykiardopoulou ${ }^{\text {a,j }}$, T. Miyagi ${ }^{\text {a,l,m, }}$, M. Mougeot ${ }^{\text {n,o }}$, I. Mukul ${ }^{\text {a }}$, T. Murböck ${ }^{\text {a }}$, W.S. Porter ${ }^{\text {a,j }}$, M. Reiter ${ }^{\text {p }}$, J. Ringuette ${ }^{\mathrm{a}, \mathrm{q}}, \mathrm{J}$. Dilling ${ }^{\mathrm{a}, \mathrm{j}}$, A.A. Kwiatkowski ${ }^{\mathrm{a}, \mathrm{r}}$

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPEC

Islands of Inversion

TRIUMF Labs
GRIFFIN γ-Ray Spectrometer
$Y-Y$ Angular
Correlations
with GRIFFIN

GAMMA \& GRIFFIN
${ }^{74 Z n}$:
lols \& r-Process
SPES
SPES β-Decay Station

- Iols: Regions of the nuclide chart in which the energy gained through correlations
 mean-field gaps PRL 97, 162502 (2006) PHYSICAL REVIEW LETTERS appearance of deformed grou
, Their study per investigating co energies and phenomena suc deformation an shape coexister
- 4 lols identified: N = 8, 20, 28, 40

Global Calculations of Ground-State Axial Shape Asymmetry of Nucle
Peter Möller, ${ }^{1, *}$ Ragnar Bengtsson, ${ }^{2}$ B. Gillis Carlsson, ${ }^{2}$ Peter Olivius, ${ }^{2}$ and Takatoshi Ichikawa ${ }^{3}$
${ }^{1}$ Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
${ }^{2}{ }^{2}$ Department of Mathematical Physics, Lund Institute of Technology, Po.O. Box III, SE-22100 Rase Research Center, Japan Atomic Energy Agency (JAEA), Tokai-mura, Naka-gun, Ibaraki, 319-1195, Japan rr. Japan Atomic Energy Agency (JAEA), Tokai-mura, Na,
(Received 21 March 2006; published 17 October 2006)

Triaxiality and nuclear mass:
r-process nucleosynthesis

INFN
 Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES
 Our Experiment on 74 Zn with GRIFFIN

- ${ }^{74} \mathrm{Zn}$ via ${ }^{74} \mathrm{Cu} \beta$-decay $\left[\mathrm{T}_{1 / 2}=1.63(5) \mathrm{s}\right]$, Beam intensity $\approx 1.5 \cdot 10^{3} \mathrm{pps}$
- GRIFFIN: 12 of 16 available clovers at 14.5 cm from the target
- $\varepsilon_{\gamma}(1332.5 \mathrm{keV})=7.8 \%, \varepsilon_{\gamma}(300 \mathrm{keV})=16.6 \%$
- P / T (addback +BGO suppressors) $=45.5 \%$
- Tape cycle: $5 \mathrm{~T}_{1 / 2}$ on, 1 s off, 0.5 s background, 1 s tape movement

$\mathrm{Y}-\mathrm{Y}$ Angular Correlations: the $\left(\mathrm{O}_{2}{ }^{+}\right)$

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay
Station

- The state at 1789 keV is firmly established as the first excited 0^{+}state

Experimental Results in a Nutshell

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay
Station

- New, definitive spin assignment for:
- $22^{+}, 0_{2}{ }^{+}, 3_{1}{ }^{+}, 2_{3}{ }^{+}$states
, Two new transitions:
- $2_{3}{ }^{+} \longrightarrow 4_{1}{ }^{+}$and $2_{3}{ }^{+} \longrightarrow \mathrm{O}_{2}{ }^{+}$
- From measured branching ratios and $\delta(E 2 / M 1)$ mixing ratios \Rightarrow Relative $B(E 2)$ values

Strong transitions observed, indicative of band structures
at low-spin in 74 Zn

Calculated Shapes from Shell Model

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN
${ }^{74 Z n}$:
lols \& r-Process

SPES

SPES β-Decay
Station

- The experimental results triggered new developments in state-of-the-art shell model calculations (LSSM, LargeScale Shell Model by Silvia Lenzi, Frédéric Nowacki, Duc D. Dao)
- The calculations reproduce well the results
- For the first time with this approach, shapes of ground and excited states have been extracted

60°

Calculated Shapes from Shell Model

TRIUMF Labs
GRIFFIN γ-Ray Spectrometer

60°

Calculated Shapes from Shell Model

TRIUMF Labs

GRIFFIN γ-Ray Spectrometer
$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN
${ }^{74 Z n}$:
lols \& r-Process

SPES
SPES β-Decay Station

- The experimental results triggered new developments in state-of-the-art shell model calculations (LSSM, Large-
 Scale Shell Model by Silvia Lenzi, Frédéric Nowacki, D. Dao)
- The calculations reproduce well the results
- Fo The $\mathrm{O}_{2}+$ state is less deformed than the an ground state

\downarrow

Typical behaviour of a nucleus in an Island of Inversion

- Strong $2_{3}{ }^{+} \rightarrow 0_{2}{ }^{+} \Longrightarrow$ Hint of Configuration Coexistence
- Strong $3_{1}{ }^{+} \longrightarrow 2_{2^{+}} \Longrightarrow$ Hint of a quasi γ-band at low excitation energy and Triaxiality
- New Large-Scale Shell-Model calculations support this interpretation
- Inversion of "normal" and intruder configurations \Rightarrow ${ }^{74} \mathrm{Zn}$ seems to be in the $\mathrm{N}=40$ Island of Inversion, which extends further north in the chart of the nuclides

PHYSICAL REVIEW LETTERS 130, 122502 (2023)
First Evidence of Axial Shape Asymmetry and Configuration Coexistence in ${ }^{74} \mathrm{Zn}$: Suggestion for a Northern Extension of the $N=40$ Island of Inversion
M. Rocchini $\odot,{ }^{1, *}$ P. E. Garrett,1 M. Zielińska $\odot{ }^{2}$, S. M. Lenzi,3,4 D. D. Dao ${ }^{5},{ }^{5}$ F. Nowacki, ${ }^{5}$ V. Bildstein, ${ }^{1}$ D. MacLean ${ }^{1}$ B Olaizola $\oplus^{6,4}$ Z T. Ahmed ${ }^{1}$ C. Andreoiu® ${ }^{7}$ A Babu ${ }^{6}$ G. C. Ball ${ }^{6}$ S. S. Bhattacharjee ${ }^{6,}$ H. Bidaman, ${ }^{1}$ C. Cheng, ${ }^{6}$ R. Coleman, ${ }^{1}$ I. Dillmanne ${ }^{6,8}$ A. B. Garnsworthy, ${ }^{6}$ S. Gillespie ${ }^{6}$ C. J. Griffin,$^{6}{ }^{6}$ G. F. Grinyer ${ }^{9}{ }^{9}$ G. Hackman, ${ }^{6}$ M. Hanley 0^{10} A. Illana \oplus^{11} S. Jones, ${ }^{12}$ A. T. Lafforey, ${ }^{1}$ K. G. Leache ${ }^{10}$ R. S. Lubna ${ }^{6,8,8}$ J. McAfee ${ }^{6,13}$ C. Natzke, ${ }^{6,10}$ S. Pannu, ${ }^{1}$ C. Paxman $\odot,{ }^{6,13}$ C. Porzio $\oplus,{ }^{6,14,15, \mid}$ A. J. Radich, ${ }^{1}$ M. M. Rajabali, ${ }^{16}$ F. Sarazin ${ }^{1},{ }^{10}$ K. Schwarz, ${ }^{6}$ S. Shadrick, ${ }^{10}$ S. Sharma, ${ }^{9}$ J. Suh, ${ }^{9}$ C. E. Svensson, ${ }^{1}$ D. Yates $\oplus,{ }^{6,17}$ and T. Zidar ${ }^{1}$

INFN
Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES
SPES @LNL
TRIUMF Labs
GRIFFIN γ-Ray
Spectrometer
Y-Y Angular
Correlations
with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay
Station

INFN
Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

SPES @LNL

TRIUMF Labs
GRIFFIN γ-Ray Spectrometer

$\gamma-\gamma$ Angular
Correlations with GRIFFIN

GAMMA \& GRIFFIN
${ }^{74 Z n}$:
lols \& r-Process

SPES

SPES β-Decay
Station

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES
SPES @LNL
TRIUMF Labs
GRIFFIN Y-Ray
Spectrometer
$\gamma-\gamma$ Angular
Correlations with GRIFFIN

GAMMA \& GRIFFIN

74Zn:
lols \& r-Process

SPES

SPES β-Decay Station

INFN
 Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES
 β-Decay Station @ SPES

TRIUMF Labs
GRIFFIN Y-Ray
Spectrometer
$\gamma-\gamma$ Angular
Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay
Station

INFN

Gamma-ray spectroscopy following beta-decay of ISOL beams: TRIUMF and SPES

β-Decay Station @ SPES

TRIUMF Labs
GRIFFIN γ-Ray Spectrometer

$\gamma-\gamma$ Angular Correlations with GRIFFIN

GAMMA \& GRIFFIN

74 Zn :
lols \& r-Process

SPES

SPES β-Decay
Station

Marco Rocchini

INFN - Istituto Nazionale di Fisica Nucleare FIRENZE DIVISION

Thank you for the attention

