Contribution ID: 2 Type: not specified

Searching for the microscopic origin of shape coexistence in Ca isotopes

Friday, 21 June 2024 10:00 (20 minutes)

Nuclear shape coexistence plays a crucial role in understanding the microscopic origin of nuclear deformation. The Ca isotopic chain between 40 Ca and 48 Ca is an optimal test area that can provide key information on shape coexistence when moving from the valley of stability towards the neutron-rich region of the Segrè chart. This work aims to perform complete low-spin spectroscopy of 42,43,44,45 Ca isotopes, complementary to the already existing data of 41,47,49 Ca, and to look for evidence of shape coexistence in the A ~ 40 region. As a first step in this direction, we focused on 42 Ca, where evidence for a 0^+ excitation associated with a superdeformed shape has been obtained in a Coulomb excitation experiment.

The 42 Ca nucleus of interest was populated with a (n_{th}, γ) reaction on a 41 Ca radioactive target.

The γ cascades emitted from the 11.480 MeV capture state were detected using the 32 HPGe crystals array FIPPS, at ILL (Grenoble).

The result of this work is a complex level scheme that will be presented together with preliminary angular correlation studies made to establish spin and parities of several excited states of 42 Ca.

Primary author: LUCIANI, Massimiliano (Istituto Nazionale di Fisica Nucleare)

Presenter: LUCIANI, Massimiliano (Istituto Nazionale di Fisica Nucleare)

Session Classification: On-going analysis

Track Classification: Shape coexistence