

Neutron star gravitational waves emission

Francesca Attadio, 11th April, 2024

Fundamental physics and searches

Presentation outline

- Gravitational waves (GWs) and standard categorization of GWs signals with a focus on modeled signals
- Neutron stars (NSs), pulsars and magnetars,
- GWs emitted by NSs, amplitude and relevant parameters
- Different kind of searches and time frequency maps
- Machine learning approach
- Conclusions

Gravitational waves

Gravitational-Waves (GW) are **ripples in** the space-time fabric produced by huge astrophysical catastrophes, such as the coalescence of compact binary (two black holes and/or neutron stars).

Image credit: LIGO/T. Pyle

The first direct detection is dated 14th September 2015, a century after their prediction by Einstein (1916), within the General Relativity framework.

Standard categorization of GWs signals

Image credit: Shanika Galaudage

Modeled signals

Transient signals

Duration: 0.1 to 100 seconds

Sources: Compact binary coalescence **Sources**: Isolated neutron stars, (CBC), supernova explosions. low mass x ray binary

Continuous waves

Duration: hours to years

Image credit: NASA, Dana Berry

Not detected

Final stage of stars with an initial mass between 8 and 30 solar masses.

Main characteristics:

Mass: 1.25-2.15 solar masses
Radius: 10-12 km
Density: $\rho \leq 10^{15} \frac{g}{\text{cm}^3}$

It is impossible to reach on earth this kind of densities

NSs are cosmic laboratory

Neutron stars (NSs)

Credit: NASA's Goddard Space Flight Center/Conceptual Image Lab

Pulsar

 $B \sim 10^9 - 10^{14} \,\mathrm{G}$ $f_{rot} \sim 0.1 - 740 \text{ Hz}$ $\epsilon < 10^{-5}$

Different kind of NSs

Newly born Magnetars

$B \sim 10^{15} - 10^{16} \,\mathrm{G}$ $f_{rot} \sim 250 - 1000 \text{ Hz}$ $\epsilon \sim 10^{-5} - 10^{-3}$

Gravitational waves

Spin down equation

n: Braking index

k: Constant

Rotational parameters: f, f, ...

- The rotational energy of the star is used to emit GWs and electromagnetic radiation
 - $f_{\rm rot} = -kf_{\rm rot}^n$
 - $f_{\rm GW} = 2f_{\rm rot} \equiv f$

They depends on the kind of emission

The measure of the asymmetry is the ellipticity (ϵ)

Possible cause of asymmetry:

Mountains

R-modes

Magnetic field

Ellipticity (Oblateness)

We do not have a measure of ellipticity for known NSs

Different kind of searches

Time-frequency maps

Time series

Time-frequency map

Machine learning

- * Training set
- Validation set *****
- Test set *****

Loss function

It estimates the distance from the current output and the desired output

Our goal during the training is to minimize this function

The choice of the loss function depends on the choice of the ML model

Machine learning

- * Training set
- Validation set *
- Test set *

Loss function

It estimates the distance from the current output and the desired output

Our goal during the training is to minimize this function

The choice of the loss function depends on the choice of the ML model

Classifier

Classification of time-frequency maps

Presence of signal

Absence of signal

Classifier

Classification of time-frequency maps

Presence of signal

Absence of signal

Denoiser

Conclusions

It is important to detect GWs emitted by NSs in order to understand how matter behaves in such extreme conditions

- It is an open research field
 - We are studying frontier physics

- Improve the already existing data analysis techniques
 - Develop new techniques
 - New generation interferometers

What is next?

Conclusions

It is important to detect GWs emitted by NSs in order to understand how matter behaves in such extreme conditions

- It is an open research field
- We are studying frontier physics

- Improve the already existing data analysis techniques
 - Develop new techniques
 - New generation interferometers

THANK YOU FOR YOUR ATTENTION

What is next?

