Gravitational-wave interferometric detectors and the Virgo experiment

F. De Marco

Sapienza University and INFN Roma1 Young@INFN - Sapienza University, 11th April 2024

Istituto Nazionale di Fisica Nucleare

1. Gravitational Waves

Gravitational-waves (GWs)

- Predicted by Einstein (1916): GR equations do have a wave solution!
- A GW can be seen as a *space-time strain* $h = \Delta L/L$
- In the Transverse-Traceless (TT) gauge:

Gravitational-waves (GWs)

- Predicted by Einstein (1916): GR equations do have a wave solution!
- A GW can be seen as a *space-time strain* $h = \Delta L/L$
- In the Transverse-Traceless (TT) gauge:

$$h_{ij}^{TT}(t, \mathbf{x}) = \begin{pmatrix} 4G_1 \\ c^4 \\ r \end{pmatrix} d^3 \mathbf{x}' T_{ij} \left(t - \frac{r}{c} + \frac{\mathbf{x}' \cdot \hat{\mathbf{n}}}{c}, \mathbf{x}' \right)$$

$$HUGE \text{ suppression factor: } h \lesssim 10^{21} \text{ on Earth} \qquad \text{amplitude } \propto r^{-1}$$

$$\mathbf{with no sources (masses):}$$

$$h^{TT}(t, z) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & h_+ & h_\times & 0 \\ 0 & h_\times & -h_+ & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cos \left[\omega (t - z/c) \right]$$

$$\operatorname{travels at } c$$

$$h_x \qquad 0 \qquad \frac{\pi}{2} \qquad \pi \qquad \frac{3\pi}{2} \qquad 2\pi$$

$$\operatorname{Credit: \ \underline{redist, \ Patil - Universe \ 2017, \ 3(31, 59)}$$

2 transverse polarizations: $h_{_{\star}}$ and $h_{_{X}}$

GW detectors and Virgo

Gravity at its strongest regime

- GWs are (almost) not perturbed by matter
- Generated in very strong regime (remind the suppression factor!)

Astrophysics

- source study
- multi-messenger observations

- Fundamental physics
 - Neutron Star EOS
- BH population
- H₀ tension

Cosmology

Primordial GW

GW sources Modeled Unmodeled Stochastic Spinning bodies Big Bang background Coalescing binaries Burst ent ົດ

See next talk by F. Attadio...

GW spectrum

As with e.m. observations, different wavelength regimes require very different approaches!

State-of-the-art of GW detections

- A better sensitivity improves our astrophysical reach
- Figure of merit: Binary Neutron Star Horizon (today ~55-60 Mpc for Virgo)

Worldwide network of GW detectors

Credits: Bailes et al. - Nature Rev. Phys. 3, 344-366 (2021)

And the observations?

- 90 events in the past observing runs (O1, O2, O3)
- O4a started on May 24th,2023 with LIGO detectors
- O4b started yesterday!
- 82 event candidates at April11th, 2024

Check out the public alerts web page and keep counting!

GW detectors and Virgo

2. Ground-based detectors

Earth-based interferometers

- Dual-recycled Michelson interferometer (ITF) with km-long Fabry-Perot (FP) arm cavities
- Test masses (mirrors) are displaced by the passage of a GW
- Differential measurement of **GW amplitude**

$$\Delta \phi = \omega_L \Delta t \simeq \frac{4\pi L}{\lambda_L} h_+$$

• Broad frequency and angular response, with some blind spots: antenna pattern

Earth-based interferometers

- Dual-recycled Michelson interferometer (ITF) with km-long Fabry-Perot (FP) arm cavities
- Test masses (mirrors) are displaced by the passage of a GW
- Differential measurement of **GW amplitude**

$$\Delta \phi = \omega_L \Delta t \simeq \frac{4\pi L}{\lambda_L} h_+$$

• Broad frequency and angular response, with some blind spots: antenna pattern

Earth-based interferometers

- Dual-recycled Michelson interferometer (ITF) with km-long Fabry-Perot (FP) arm cavities
- Test masses (mirrors) are displaced by the passage of a GW
- Differential measurement of **GW amplitude**

$$\Delta \phi = \omega_L \Delta t \simeq \frac{4\pi L}{\lambda_L} h_+$$

• Broad frequency and angular response, with some blind spots: antenna pattern

Why Fabry-Perot (FP) arms?

Sensitivity curve

ASD of (independent and stationary!) noise sources:

$$\mathcal{N}(f) = \sqrt{2 \lim_{T \to \infty} \frac{1}{T} \left| \int_{-T/2}^{T/2} n(t) e^{-i2\pi f t} dt \right|^2}$$

"Fundamental" noise sources:

- Seismic noise
- Thermal noise
- Quantum noise

...but there are many other noises :(Reducing their contribute is the main effort of experimental physicists in GW!

3. Noise sources

Seismic and environmental noise (<10 Hz)

- Relevant at low frequencies (micro-earthquakes, wind, sea activity...)
- Inverted pendulum + chain of pendulums with low proper frequency (0.6 Hz) to make a "cascade filter": **Superattenuator**
- Heavier end test masses

Thermal noise (<300 Hz)

- Any dissipation at non-zero temperature brings vibrational noise (Fluctuation-Dissipation Theorem)
- Relevant to ALL precision measurements!

Many sources...

- Suspensions
- Bulk of the mirrors
- Coatings: very good from optical point of view, not from thermal one (active field of R&D)

...and solutions!

- monolithic suspensions
- better quality of materials
- lower optical power density (larger beams)
- cryogenics!! (KAGRA, ET...)

- Macroscopic manifestation of the discreteness of laser light
- Originated by vacuum field entering the dark port of the ITF
- 2 contributions
 - back-action: Radiation-Pressure Noise (RPN)
 - detection: Shot Noise (SN)
- They meet at the **Standard Quantum Limit** (SQL), lowest frequency of quantum noise

- Macroscopic manifestation of the discreteness of laser light
- Originated by vacuum field entering the dark port of the ITF
- 2 contributions
 - back-action: Radiation-Pressure Noise (RPN)
 - detection: Shot Noise (SN)
- They meet at the **Standard Quantum Limit** (SQL), lowest frequency of quantum noise

- Macroscopic manifestation of the discreteness of laser light
- Originated by vacuum field entering the dark port of the ITF
- 2 contributions
 - back-action: Radiation-Pressure Noise (RPN)
 - detection: Shot Noise (SN)
- They meet at the **Standard Quantum Limit** (SQL), lowest frequency of quantum noise

- Macroscopic manifestation of the discreteness of laser light
- Originated by vacuum field entering the dark port of the ITF
- 2 contributions
 - back-action: Radiation-Pressure Noise (RPN)
 - detection: Shot Noise (SN)
- They meet at the **Standard Quantum Limit** (SQL), lowest frequency of quantum noise

Standard Quantum Limit (SQL)

Quantum noise reduction with squeezing

Power spectrum of Quantum Noise:

Quantum noise reduction with squeezing

Power spectrum of Quantum Noise:

Filter Cavity

- Squeezing ellipse can be rotated in a frequency-dependent manner with a detuned linear cavity (Filter Cavity)
- Central rotation angle @ ~50 Hz implies
 - Long cavity L=285 m
 - High finesse F=10000
- Round-trip losses in AdV+ FC: **50-90 ppm** Virgo Coll. - Phys. Rev. Lett. 131 041403 (2023)

Filter Cavity

- Squeezing ellipse can be rotated in a • frequency-dependent manner with a detuned linear cavity (Filter Cavity)
- Central rotation angle @ ~50 Hz implies
 - Long cavity L=285 m 0
 - High finesse F=10000 0
- Round-trip losses in AdV+ FC: 50-90 ppm Virgo Coll. - Phys. Rev. Lett. 131 041403 (2023)

Input

Mode

Cleaner

100W

Laser

Faraday

Isolator

Squeezed

Output

Photodiode 🖭

Mode Cleaner

GW detectors and Virgo

To wrap up...

- 1. GWs are "ripples of space-time" caused by strong acceleration of huge masses
- 2. They can be revealed on the Earth with long-baseline Michelson interferometers, such as LIGO, VIRGO and KAGRA
- 3. The most important noise sources are seismic, thermal and quantum noise. Higher laser power, heavier mirrors, low-dispersion materials and squeezing of light are the main measures to counter them
- 4. Frequency-dependent squeezing of light can be implemented through an external detuned cavity coupled to the main interferometer
- 5. Improving the sensitivity of GW detectors allow to build up a consistent catalog of observations and make new physics!

Thank you for your attention

Questions??

Email: <u>francesco.demarco@roma1.infn.it</u>

Backup slides

GW interaction with the detector

- Michelson ITF only, and GW much longer than the ITF
- GW distorts space-time metric, affecting the propagation time in the arms

$$t_x \simeq \frac{2}{c} \int_0^L \left(1 + \frac{1}{2}h_+\right) dx \qquad t_y \simeq \frac{2}{c} \int_0^L \left(1 - \frac{1}{2}h_+\right) dx$$

• Phase shift at the output dark port

$$\Delta \phi = \omega_L \Delta t \simeq \frac{4\pi L}{\lambda_L} h_+$$

Typical values:

- FP arm length L = 3 km(4 km for LIGO, 3 km for KAGRA)
- GW strain $h \approx 10^{-21}$

Power Recycling

- The ITF is always kept close to *dark fringe condition*, i.e. destructive interference at the output (dark) port
- Power is almost entirely reflected back towards the laser source

Power Recycling

- The ITF is always kept close to *dark fringe condition*, i.e. destructive interference at the output (dark) port
- Power is almost entirely reflected back towards the laser source
- Power Recycling Mirror (PRM) avoids this waste of power and increases the circulating power in the ITF, thus the sensitivity

Power Recycling

- The ITF is always kept close to *dark fringe condition*, i.e. destructive interference at the output (dark) port
- Power is almost entirely reflected back towards the laser source
- Power Recycling Mirror (PRM) avoids this waste of power and increases the circulating power in the ITF, thus the sensitivity
- It creates another cavity, with the ITF as equivalent end mirror

Signal Recycling

- Name is not so intuitive...
- FP cavities reduce the bandwidth

$$\gamma \simeq rac{c \, t_{in}^2}{4 \, L}$$
2π 50 Hz

Signal Recycling

- Name is not so intuitive...
- FP cavities reduce the bandwidth
- You want something to keep the optical power high, while recovering a better bandwidth: the Signal Recycling Mirror (SRM)!
- As the PRM, it adds an optical cavity which closes with the ITF itself

Squeezed states of light

Quantized EM field:

Squeezing in O3 and O4

O3: Freq.-Independent Squeezing

- Phase-squeezed light 3.2 dB
- BNS range improved by 5 8 %
- Detection rate increased by 16 26 %

O4: Commissioning of a **Freq.-Dependent Squeezing** apparatus with Filter Cavity

- 5.6 dB at high frequencies and 2 dB around FC resonance
- Performances in the ITF similar to O3 due to ITF configuration

Credits: Virgo Coll. - Phys. Rev. Lett. 131 041403 (2023)

Squeezing in O3 and O4

O3: Freq.-Independent Squeezing

- Phase-squeezed light 3.2 dB
- BNS range improved by 5 8 %
- Detection rate increased by 16 26 %

(*) Covered by other low-freq. noise sources

O4: Commissioning of a **Freq.-Dependent Squeezing** apparatus with Filter Cavity

- 5.6 dB at high frequencies and 2 dB around FC resonance
- Performances in the ITF similar to O3 due to ITF configuration

Credits: Virgo Coll. - Phys. Rev. Lett. 131 041403 (2023)

A novel approach: EPR squeezing

1. Signal and idler are vacuum squeezed beams, EPR-entangled and detuned by Δ

Pros:

- More compact and cheaper
- Avoids some optical losses

GW detectors and Virgo

Cons:

2 squeezed beams to be handled

A novel approach: EPR squeezing

Pros:

- More compact and cheaper
- Avoids some optical losses

GW detectors and Virgo

Cons:

2 squeezed beams to be handled

Credits: Ma et al. - Nature Phys 13, 776-780 (2017)

A novel approach: EPR squeezing

GW detectors and Virgo

