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1. 
Gravitational 
Waves
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Credits: LIGO Collaboration / T. Pyle
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Gravitational-waves (GWs)

● Predicted by Einstein (1916): GR equations do have a wave solution!

● A GW can be seen as a space-time strain

● In the Transverse-Traceless (TT) gauge:
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●  with no sources (masses):

Credits: Królak, Patil - Universe 2017, 3(3), 59

https://doi.org/10.3390/universe3030059
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HUGE suppression factor:                     on Earth

Gravitational-waves (GWs)

● Predicted by Einstein (1916): GR equations do have a wave solution!

● A GW can be seen as a space-time strain

● In the Transverse-Traceless (TT) gauge:

3

travels at c

●  with no sources (masses):

amplitude ∝ r-1

2 transverse polarizations: h
+
 and h

✕ 

Credits: Królak, Patil - Universe 2017, 3(3), 59

https://doi.org/10.3390/universe3030059
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Gravity at its strongest regime

● GWs are (almost) not perturbed by matter

● Generated in very strong regime (remind 

the suppression factor!)
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See next talk by F. Attadio…

Astrophysics

● source study

● multi-messenger 
observations

Cosmology

● BH population

● H
0
 tension

● Primordial GW

Fundamental physics

● Neutron Star EOS
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GW spectrum
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Credits: Bailes et al. - Nature Rev. Phys. 3, 344-366 (2021)

As with e.m. 
observations, 
different wavelength 
regimes require very 
different 
approaches!

https://doi.org/10.1038/s42254-021-00303-8


GW detectors and Virgo Young@INFN 2024

State-of-the-art of GW detections

● A better sensitivity improves our astrophysical reach

● Figure of merit: Binary Neutron Star Horizon 

(today ∼55-60 Mpc for Virgo)
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Worldwide network of GW detectors

LIGO
Hanford

KAGRALIGO 
Livingston

Virgo

And the observations?

● 90 events in the past 

observing runs (O1, O2, O3)

● O4a started on May 24th, 

2023 with LIGO detectors

● O4b started yesterday!

● 82 event candidates at April 

11th, 2024

Check out the public alerts web page and keep counting!Credits: Bailes et al. - Nature Rev. Phys. 3, 344-366 (2021)

https://gracedb.ligo.org/superevents/public/O4/
https://doi.org/10.1038/s42254-021-00303-8
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2. 
Ground-based 
detectors 
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Credits: Virgo Collaboration
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Earth-based interferometers
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● Dual-recycled Michelson interferometer (ITF) with km-long 
Fabry-Perot (FP) arm cavities

● Test masses (mirrors) are displaced by the passage of a GW

● Differential measurement of GW amplitude

● Broad frequency and angular response, with some blind 
spots: antenna pattern

PRM

SRM

ITM

ETMITM

ETM

Credits: VIrgo Coll.
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Earth-based interferometers
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● Dual-recycled Michelson interferometer (ITF) with km-long 
Fabry-Perot (FP) arm cavities

● Test masses (mirrors) are displaced by the passage of a GW

● Differential measurement of GW amplitude

● Broad frequency and angular response, with some blind 
spots: antenna patternCentral ITF

FP arms
(L = 3 km)

PRM

SRM

ITM

ETMITM

ETM

Credits: VIrgo Coll.



GW detectors and Virgo Young@INFN 2024 9

Why Fabry-Perot (FP) arms?
Approximations!

● GW much longer than ITF
● best directional sensitivity
● no modulation sidebands in the laser
● equal ITF arms length

Differential measurement

FP gain FP cut-off

Michelson ITF

Michelson ITF with FP arms
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Sensitivity curve

“Fundamental” noise sources:

● Seismic noise

● Thermal noise

● Quantum noise

…but there are many other noises :(

Reducing their contribute is the main effort 

of experimental physicists in GW!
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Credits: Virgo Coll. - Class. Quant. Grav. 32 024001 (2015)

ASD of (independent and stationary!) 
noise sources:

Frequency [Hz]

https://iopscience.iop.org/article/10.1088/0264-9381/32/2/024001
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3. 
Noise sources

14

Credits: Virgo CollaborationCredits: Virgo Collaboration / M. Perciballi
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● Relevant at low frequencies (micro-earthquakes, wind, 
sea activity…)

● Inverted pendulum + chain of pendulums with low proper 
frequency (0.6 Hz) to make a “cascade filter”: Superattenuator

● Heavier end test masses

Seismic and environmental noise (<10 Hz)
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42 kg
now

105 kg
O5

Seismic noise @Virgo site

11 orders of 
magnitude of 
attenuation 
@10 Hz!

Credits: Virgo Coll. - Jour. of Low Frequency Noise, 
Vibration and Active Control 30(1):63-79 (2011)

Credits: M. Perciballi

https://doi.org/10.1260/0263-0923.30.1.63
https://doi.org/10.1260/0263-0923.30.1.63
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Mirror

Anchor

Ear

Thermal noise (<300 Hz)
● Any dissipation at non-zero temperature brings 

vibrational noise (Fluctuation-Dissipation Theorem)
● Relevant to ALL precision measurements!
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…and solutions!
● monolithic suspensions
● better quality of materials
● lower optical power 

density (larger beams)
● cryogenics!! (KAGRA, 

ET…)

Many sources…
● Suspensions

● Bulk of the mirrors

● Coatings: very good from 

optical point of view, 

not from thermal one 

(active field of R&D)

Thermal noise of mirrors’ pendulum motion
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Quantum noise (>300 Hz)

● Macroscopic manifestation of the discreteness of 

laser light

● Originated by vacuum field entering the dark port 

of the ITF

● 2 contributions

○ back-action: Radiation-Pressure Noise (RPN)

○ detection: Shot Noise (SN)

● They meet at the Standard Quantum Limit (SQL), 

lowest frequency of quantum noise

14

Standard Quantum 
Limit (SQL)

ITF optomechanical 
coupling
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Quantum noise (>300 Hz)

● Macroscopic manifestation of the discreteness of 

laser light

● Originated by vacuum field entering the dark port 

of the ITF

● 2 contributions

○ back-action: Radiation-Pressure Noise (RPN)

○ detection: Shot Noise (SN)

● They meet at the Standard Quantum Limit (SQL), 

lowest frequency of quantum noise

14

Standard Quantum 
Limit (SQL)

ITF optomechanical 
coupling

Radiation 
pressure Shot

Standard Quantum Limit (SQL)
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Power spectrum of Quantum Noise:

Quantum noise reduction with squeezing

15

Standard Quantum 
Limit (SQL)

ITF optomechanical 
coupling
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Power spectrum of Quantum Noise:

Quantum noise reduction with squeezing

15

Provided a specific tuning of the squeezing angle, 
Frequency-Dependent Squeezed light reduces QN along 
the whole detection band!

Suppression with 
freq.-dependent squeezing
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Filter Cavity

16

● Squeezing ellipse can be rotated in a 

frequency-dependent manner with a detuned 

linear cavity (Filter Cavity)

● Central rotation angle @ ~50 Hz implies

○ Long cavity L=285 m

○ High finesse F=10000

● Round-trip losses in AdV+ FC: 50-90 ppm 
Virgo Coll. - Phys. Rev. Lett. 131 041403 (2023)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.041403
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● Squeezing ellipse can be rotated in a 

frequency-dependent manner with a detuned 

linear cavity (Filter Cavity)

● Central rotation angle @ ~50 Hz implies

○ Long cavity L=285 m

○ High finesse F=10000

● Round-trip losses in AdV+ FC: 50-90 ppm 
Virgo Coll. - Phys. Rev. Lett. 131 041403 (2023)

Credits: Di Pace -  Phys. Scr. 96 124054  

EQB
1

EQB
2

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.041403
https://iopscience.iop.org/article/10.1088/1402-4896/ac2efc
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To wrap up…

1. GWs are “ripples of space-time” caused by strong acceleration of huge masses

2. They can be revealed on the Earth with long-baseline Michelson interferometers, such as 

LIGO, VIRGO and KAGRA

3. The most important noise sources are seismic, thermal and quantum noise. Higher laser 

power, heavier mirrors, low-dispersion materials and squeezing of light are the main measures 

to counter them

4. Frequency-dependent squeezing of light can be implemented through an external detuned 

cavity coupled to the main interferometer

5. Improving the sensitivity of GW detectors allow to build up a consistent catalog of 

observations and make new physics!

17
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Thank you 
for your 
attention

Questions??

Email:

francesco.demarco@roma1.infn.it

26

Credits: Virgo Collaboration

mailto:francesco.demarco@roma1.infn.it
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Backup slides

19

Credits: Virgo Collaboration
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GW interaction with the detector

● Michelson ITF only, and GW much longer than the ITF

● GW distorts space-time metric, affecting the propagation time in 

the arms

● Phase shift at the output dark port

20

Typical values:

● FP arm length
(4 km for LIGO, 3 km for KAGRA)

● GW strain

x

y
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Power Recycling

● The ITF is always kept close to dark 

fringe condition, i.e. destructive 

interference at the output (dark) port

● Power is almost entirely reflected back 

towards the laser source

21
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● Power Recycling Mirror (PRM) avoids 

this waste of power and increases the 

circulating power in the ITF, thus the 

sensitivity
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Power Recycling

● The ITF is always kept close to dark 

fringe condition, i.e. destructive 

interference at the output (dark) port

● Power is almost entirely reflected back 

towards the laser source

21

● Power Recycling Mirror (PRM) avoids 

this waste of power and increases the 

circulating power in the ITF, thus the 

sensitivity

● It creates another cavity, with the ITF 

as equivalent end mirror
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Signal Recycling

● Name is not so intuitive… 

● FP cavities reduce the bandwidth

22

2π 50 Hz
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Signal Recycling

● Name is not so intuitive… 

● FP cavities reduce the bandwidth

22

2π 50 Hz 2π 430 Hz

● You want something to keep the optical 

power high, while recovering a better 

bandwidth: the Signal Recycling Mirror 

(SRM)!

● As the PRM, it adds an optical cavity 

which closes with the ITF itself
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Squeezed states of light

23

Quantized EM field:

Cosine (or amplitude) quadrature
Radiation Pressure Noise

Sine (or phase) quadrature
Shot Noise

Vacuum state:

Squeezed vacuum state:

Squeezing parameter

Squeezing factor

Reduced variance!

Credits: Danilishin, Khalili - arXiv:1203.1706 (2012)

https://arxiv.org/abs/1203.1706
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O3: Freq.-Independent Squeezing

● Phase-squeezed light 3.2 dB

● BNS range improved by 5 - 8 %

● Detection rate increased by 16 - 26 %

O4: Commissioning of a Freq.-Dependent Squeezing 
apparatus with Filter Cavity

● 5.6 dB at high frequencies and 2 dB around FC resonance

● Performances in the ITF similar to O3 due to ITF 
configuration

Squeezing in O3 and O4

24

Credits: Virgo Coll. - Phys. Rev. Lett. 123 231108 (2019)

8.5 dB Anti-SQZ
No SQZ
3.2 dB SQZ

Credits: Virgo Coll. - Phys. Rev. Lett. 131 041403 (2023)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.231108
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.041403


GW detectors and Virgo Young@INFN 2024

O3: Freq.-Independent Squeezing

● Phase-squeezed light 3.2 dB

● BNS range improved by 5 - 8 %

● Detection rate increased by 16 - 26 %

O4: Commissioning of a Freq.-Dependent Squeezing 
apparatus with Filter Cavity

● 5.6 dB at high frequencies and 2 dB around FC resonance

● Performances in the ITF similar to O3 due to ITF 
configuration

Squeezing in O3 and O4

24

Credits: Virgo Coll. - Phys. Rev. Lett. 123 231108 (2019)

8.5 dB Anti-SQZ
No SQZ
3.2 dB SQZ

SN improvedRPN degraded(*)

(*) Covered by other low-freq. noise sources
Credits: Virgo Coll. - Phys. Rev. Lett. 131 041403 (2023)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.231108
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.041403
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A novel approach: EPR squeezing

25

1. Signal and idler are vacuum 
squeezed beams, EPR-entangled 
and detuned by Δ

Pros:
● More compact and cheaper
● Avoids some optical losses

Cons:
● 2 squeezed beams to be handled
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https://www.nature.com/articles/nphys4118
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A novel approach: EPR squeezing
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1. Signal and idler are vacuum 
squeezed beams, EPR-entangled 
and detuned by Δ

Pros:
● More compact and cheaper
● Avoids some optical losses

Cons:
● 2 squeezed beams to be handled

3. Combined measurement 
transfers the frequency dependence 
to the signal via EPR entanglement

2. The idler acquires 
frequency-dependence in the 
ITF due to its detuning

Credits: Ma et al. - Nature Phys 13, 776–780 (2017)

https://www.nature.com/articles/nphys4118

