Diffuse Axion Background

Joshua Eby Oskar Klein Centre Stockholm University

COST Action "Cosmic Wispers" WG4 Topical Meeting 2024/06/24

DALL-E 3 illustration Diffuse axion background"

Based on Eby, Takhistov (2402.00100)

indirect detection: annihilation \bullet flux from e.g. galactic center

Joshua Eby Stockholm University

lacksquare

Discovering Axions

diffuse axion background $z \sim \text{few} - 30$

- build-up of large population of relativistic axions originating in astrophysical bursts
- Raffelt, Redondo, \rightarrow Supernovae: Viaux (1110.6397)

→ General: Eby, Takhistov (2402.00100)

cosmic axion background $z \gg 30$

 $> 10^2$

- "Hot", *v* ~ *c*
- Relativistic population of axions \bullet from cosmological sources

Conlon and Marsh (1304.1804, 1305.3603) Dror, Murayama, Rodd (2101.09287)

with Arakawa, Safronova, Zaheer,

(2306.16468, 2402.06736)

Astrophysical bursts of relativistic axions

characterised by

Broad Characterisation of Bursts

- 1. Dark sector source
- 2. Low energy, $\omega \gtrsim m_a$

Credit: Kavli IPMU

3. Transient emission

Supernova

Joshua Eby | Stockholm University

vs Standard Model source

vs High energy, $\omega \gg m_a$

Credit: Soubrette

Continuous emission

Credit: HESS Collaboration

Credit: Di Luzio et al

Diffuse Axion Background

Joshua Eby | Stockholm University

 $\omega | eV$

Eby, Takhistov (2402.00100)

Parameterization: Flux

Joshua Eby | Stockholm University

E_{tot} : total energy emitted in single burst

peak energy $\bar{\boldsymbol{\omega}}$.

$\delta \omega$: energy width

- easily captures peaked distribution
- computationally simple
- sum of Gaussians can be used for
- asymmetric distributions, e.g. power-law

8

Parameterization: Rate

 $f(z) = (1 + z)^{p} \Theta(z - z_{\text{max}})$ for power-law

$$f(z) = \exp\left(-\frac{(z-\overline{z})^2}{\delta z^2}\right)$$
 for Gaussi

 $ho_{
m loss}$: total relativistic energy density emitted across all z

Convenient normalisation:

$$\rho_{\rm loss} \equiv \mathcal{F} \bar{\rho}_U$$
 with $\bar{\rho}_U \simeq 10^{-6} \, {\rm GeV}$

Joshua Eby | Stockholm University

Diffuse Axion Background

Parameterization: DaB

: total DM fraction converted to DaB

- : peak burst energy per particle $\boldsymbol{\omega}$
- $\delta \omega$: spread in burst energy per particle
- E_{tot} : energy emitted per burst

Joshua Eby Stockholm University

input parameters

particle physics burst parameterisation $\mathcal{F}, f(z), \quad \overline{\omega}, \delta\omega, \quad \overline{\mathcal{B}}_{\text{tot}} \quad \text{cancels in}$ $m_a, f_a, g_{a\gamma}, \ldots$ (cosmology) (individual bursts)

How to search for DaB: (1) direct detection, (2) photon signals, [more to come]

$$Locally, \left(\frac{d\phi}{d\omega}\right)_{local DM} \simeq \frac{n_a v_{dm}}{m_a} \simeq \frac{\rho_{dm}}{m_a^2} v_{dm}$$

$$DaB \text{ flux in present day}$$

$$\frac{d\phi}{d\omega}(\omega) = \int_0^\infty dz \frac{dN_a(\omega(1+z))}{d\omega} \frac{R_{\text{burst}}(z)}{H(z)}$$
Parameterise
flux and rate
$$\frac{\mathscr{F}\bar{\rho}_U}{m_a\delta\omega} \int dz f(z) \frac{H_0}{H(z)} \exp\left[-\left(\frac{(\omega(1+z)-\omega)}{\delta\omega}\right)^2 \frac{(\omega(1+z)-\omega)}{\delta\omega}\right]$$
narrow:
$$\frac{\delta\omega}{\omega} \to 0 \sim \frac{\mathscr{F}\bar{\rho}_U}{\bar{\omega}^2}$$

$$\frac{d\phi/d\omega}{(d\phi/d\omega)_{\text{IDM}}} \simeq \left(\frac{1}{v_{\text{dm}}}\right) \left(\frac{m_a}{\bar{\omega}}\right)^2 \left(\frac{\mathscr{F}\bar{\rho}_U}{\rho_{\text{dm}}}\right) \simeq 3 \cdot 10^{-3} \mathscr{F}\left(\frac{\omega}{\omega}\right)$$
(small)

DaB Flux vs DM Flux

Likely challenging!

- DaB flux generally \leq local DM flux
- Signal likely much less coherent than local DM

$$\tau_{\rm coh} \simeq \frac{2\pi}{m_a v^2}$$
, $v_{\rm dm} \sim 10^{-3} \,\mathrm{vs} \, v_{\rm DaB} \sim 1$

Worth investigating!

- Nontrivial energy distribution encodes cosmological evolution and source properties
- Can also encode information about fundamental axion potential, e.g. self-interactions

Direct Detection

- (typical distances $\sim \text{kpc} \text{Mpc}$)
- $P_{\gamma \rightarrow a}$ grows with large ω and small m_a

 \Rightarrow largest when $\omega \gg m_a$ with small m_a

field

z = 0

(today)

Photon Signals from DaB

 $\mathscr{L} \supset \frac{\mathbf{I}}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma} a \mathbf{E} \cdot \mathbf{B}$

conversion to photons

Signal: Photons

Axion decay to photons

- Decay can occur anywhere in space (typical distances \sim Gpc)
- P_{decay} grows with small ω and large m_{α} \Rightarrow largest when $\omega \gtrsim m_a$ with large m_a

Eby, Takhistov, (2402.00100)

Where to Search: Today

$$\omega \,[{
m eV}$$

Eby, Takhistov, (2402.00100)

Searches for DaB Gamma-Rays

Joshua Eby | Stockholm University

A very tiny energy fraction in DaB can give rise to striking signals!

Best sensitivity when $\bar{\omega} \gg m_a$

DaB Flux: Other Rates f(z)

Eby, Takhistov,

(2402.00100)

Gaussian

Eby, Takhistov, (2402.00100)

Joshua Eby | Stockholm University

Future Searches

Thank you for your attention!

Backup Slides

B-Field Conversion Probability

Joshua Eby | Stockholm University

Diffuse Axion Background

Joshua Eby | Stockholm University

Decay Probability

Eby, Takhistov, (2402.00100)

DaB Flux from Decay

20

