Scientific Background on the Nobel Prize in Physics 2011

THE ACCELERATING UNIVERSE

compiled by the Class for Physics of the Royal Swedish Academy of Sciences

The Nobel Prize in Physics 2011 was divided, one half awarded to Saul
Perimutter, the other half jointly to Brian P. Schmidt and Adam G. Riess "for the
discovery of the accelerating expansion of the Universe through observations of
distant supernovas”.

The Nobel Pnize in Physics 2011
Saul Perimutter, Brian P. Schmidt, Adam G. Riess




Let me start with a brief reminder about cosmology:

1- The Universe is isotropic and homogeneous.
2- We assume General Relativity

3- The metric is the Friedmann-Lemaitre-Robertson-Walker
for an expanding Universe.



The FLRW metric
ds? = dt? —|dr? + r?dQ?| ool Ralatiugte, o use

.. but here the Universe is

d52 — dt2 — az(’[)[dr2 + erQZ] expa.nd.ing. Spatial part
multiplied by a scale factor

T solely function of time. Spatial
coordinates are comoving.
«Scale factor» We can syncronize all the

clocks in the universe at the
same time t.a=1

dr2 .. the spatial part could also be
ds? = dt? — a(t)2 1 r2dO? non-Euclidean. k>0 means
1— (I’Z closed universe, k<O means
— A - open universe. k is a constant.

«Curvature»



Friedmann's Universe
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Around 1922 Friedmann and, independently, Lemaitre (1927) independently
proposed an expanding universe and therefore no need for a cosmological constant
term. Einstein, at the beginning,

rejected the idea of an expanding universe.
In particular Einstein commented the idea as:

“.... while mathematically correct it's of
no physical significance"

While, according to Lemaitre, he was telling him:

"Vos calculs sont corrects, mais votre physique est abominable”




But an expanding universe his is exactly what was measured by
Wirtz, Hubble and Humason ...
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The Friedmann Equations

Einstein's equa‘rioy G,u y — 87ZG T,U v

10 0 O
o a2 0 0
Y=l 0 a2 0
0 0 0 a

We have two independent
equations. The first one
relates the expansion rate
to the energy content,

The second one the
relates the acceleration
to energy and pressure.

D | Q.

QD | Q:

pt) 0 0 0
0 Pt) 0 O
0 0 Pt O
0 0 0 P()

We solve the system

by introducing an
equation of state of the
form

P=wp

where w is usually
a constant with time.



The Continuity Equation

Combining the first and second Friedmann equation we get:

dp =-3(1+w) da
a

yo,
We can integrate for a generic fluid with
equation of state wi obtaining: 0. 0
|
Pi a3(l+Wi)
We can consider 4 cases: IOO
_ — _ Mm
Matter P=0 Wi = 0 Pm = "3
a
1 1 B
r r r
3 3 " a’

Curvature Pk = — O /3 W, = -1/3 P = ,Ol? /a’



Some re-definitions

a
The Hubble Constant: 0= (—j
a t=t,
Th | d ( ) o, 3H02
e critical density (constant): =
© 8aG

0
The density parameters (computed today): Q. = Pi
Pc



Some re-definitions

Suppose to have i=1,..,n energy components with equation of

state wi




Curvature

and the deceleration parameter

Computing the Friedmann equations today, we have

1=).Q

Deceleration

Parameter | a 1
qo > O universe is decelerating qO — >
qo < O universe is accelerating

a)H,;

:%ZQi(l+3Wi)

t:to

In a model with curvature+matter+ cosmological constant:

Q =1-0 -0,

Qm
Uo :7_91\

If qo<O then we need

a cosmological constant.
However we need to know
the curvature to determine
its precise value.



Measuring the deceleration parameter: luminosity distance.

In astronomy, given an object with known luminosity L we can
measure its distance by measuring the radiative flux on earth:

Actually astronomers (since Hypparcos) use magnitudes

f — m apparent magnitude
L — M absolute magnitude

L

r
Anr? glo(10 pcj




Measuring the deceleration parameter: luminosity distance.

In cosmology, in an expanding universe, the luminosity
distance is a function of the rate of expansion of the

universe.

d, (z)=cH,"(1+ z)j [Q -

dz'

z')3+QA]

We can expand for small values of z. At first order we get

the Hubble law:

d, (z)=cH 'z +...
at second order we get deviations that depends on qo !

d, (z)~cH,"z

1+

1-q,

VA

+...



The Key Equation

Measured
is equivalent to Marginalized i
the observed flux over Derived

/

l ( l—1 | 1_qo Ik
m—-M =5log| cH,"z| 1A Z

| . 2 [ 1)
Aestimated \

Equivalent to
The intrinsic Measured

luminosity (spectra)

+ 25




Objects with the same luminosity (or absolute magnitude)
and at the same redshift will appear less luminous (or with greater
apparent magnitude) if the universe is in accelerated expansion.
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Wla-Arietralian Ohecarvatnry
glo-Australian Observatory
> A

Decelerated Accelerated









Are Supernovae type Ia standard candles ?
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During the course of

the Caldan/Tololo Supernova
Survey, Mark M. Phillips discovered
that the faster the supernova faded
from maximum light, the fainter its
peak luminosity was.
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LEAST-SQUARES FITS

BanNDPASS

M, =a+bAm,(B)

a b o (mag)

—21.726(0.498) 2.698(0.359) 0.36
—20.883(0.417) 1.949(0.292) 0.28
—19.591(0.415)  1.076(0.273) 0.38




Observational Evidence from Supernovae for an Accelerating Universe and a

Cosmological Constant

To Appear in the Astronomical Journal

Adam (. Riess', Alexei V. Filippenko', Peter Challis®, Alejandro Clocchiatti?, Alan Diercks®, Peter M.
Garnavich?®, Ron L. Gilliland®, Craig J. Hogan?, Saurabh Jha®, Robert P. Kirshner?, B. Leibundgut®, M.
M. Phillips”. David Reiss?, Brian P. Schmidt® ¥, Robert A. Schommer”, R. Chris Smith™ %, J. Spyromilicf,
Christopher Stubbs?, Nicholas B. Suntzeff”, John Tonry!?

ABSTRACT

We present spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the
redshift range (.16 < z € (.62, The luminosity distances of these objects are determined by
methods that employ relations between SN [a luminosity and light curve shape. Combined with
previous data from our High-Z Supernova Search Team (Garnavich et al. 1998; Schmidt et al.
1998} and Riess et al. (1998a), this expanded set of 16 high-redshift supernovae and a set of
34 nearby supernovae are used to place constraints on the following cosmological parameters:
the Hubble constant (Hy). the mass density (5], the cosmological constant (i.e.. the vacuum
energy density, {1, ], the deceleration parameter (g, ). and the dynamical age of the Universe (#;).
The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected
in & low mass density ({23y = 0.2) Universe without a cosmological constant. Different light
curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally
expanding models with positive cosmological constant (i.e., {13 > () and a current acceleration
of the expansion (i.e., gy < 0). With no prior constraint on mass density other than 23y = 0,
the spectroscopically confirmed SNe Ia are statistically consistent with gy < 0 at the 2.8¢

Riess et al., 1998 (submitted May 1998)
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W repart massurernents of the mass density, Ty, snd codmolagical-canstant enerey density, 0, af the uni.
virsa based on the analysis of 42 Tyvpe la supermovas discovered by the Supernova Cosmology Praject. The
magniude-redshi(l data for these supernovas, &1 redshills between 0018 &nd 083, are G jednlly with & s of du-
permevae from the CaldnTalals Supermava Survey, ab redshalls balow 0.1, e viald svalees for the cosmelogical
pararmaters. All superneva peak magnitwdes ane standardized uiang & 5N 12 Gghteurve width-luminesity relation.
The measurement yiekls & joint probebility distcbution of the cosmalogical parametars that 18 appraximated by
the relaton O B0y =068, &= 02 =01 mn the n:gi.r_ln af mierest [L"‘H & 1.5). For a Bat (0 =Tl = 17 Corde

malogy we find (fF = 026235 (17 statstical) =00 |_:||J.-:11I!|.I'|.-=d syslematics). The data are strongly incomsistent
with & & = fat -:-uinulug.'. II.'||: samiplest 1r|.ﬂ..:|:||.'-112|.n umiverss model. An apen, A =0 Ll’.lﬁ'l'll.‘!'lJE.' alsn dies not
fit the dats well: the deta indicats that the cosmological condtant % monszero and pasitive, with & confidence of
Pl = 0= 99, including the identfied systematic uncertainties. The best=fil age af the universs relative 1o the
Hubble time i 5= = 14, 'El::",‘l_"J a3 'R} Ciyr for a Aar cosmolagy. The size of gur sample allows s b perform a
varaly of statstical pess o check for posaible svatematic ermors and biases. We find no significant diferances in
gither the host reddening disiribution ar Malmguist bias between the low-redshill CalinTolols semple and aar
high-redshifl sample. Excloding thoss few supermovas which are cutliens in color excess ar GF ressdual does not
stgnificantly change the results, The conslusions are alsa mabusl whether or not 2 widib-luminasity relation 15 used
b skandardize the supernava peak magnitudes. We dicoss, and consirgin whens pedagible, bypothetcal altematves
bt & easmological constant,
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ABSTRACT
This Lowrence Berkeley National Loboratory reprint is o reduction of o poster presentetion
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Socizty mesting in Washingion D.C. It ix olss awvailable on the World Wide Wab af
hetp:/ /wwwesupernova LBL gov/ This work hos also besn referenced in the literature by the
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supernovee. The experimental strategy, data sets, and anslysis techniques ace deseribed. Mare
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Fleld - Imaging at Hubble,
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me . ///
o
RESULT: ~24 Type la supernovae  Keck
discovered while stil brightening,
at new mooen

Perimutter, et al . in Thermonuclear Supemovae, NATQ ASI, v, 48¢

L))

We developed a strategy to guarantee a group of supernova discoveries on a certain date. Just
alter a new moon, we observe some 50 to 100 high-galactic lattitute fields—each containing
almost a thousand high-redshift galaxies—in two nights on the Cerro Tololo 4-meter telescope
with Tyson & Bernstein’s wide-field camera. We return three weeks later 1o observe the same
fields, and then examine the images of all of the tens of thousands of galaxies. On average.
some two dozen Type la supernovae will thus be discovered just before new moon—and while
still brightening, since the three week time baseline is less than the rise ime of a Type la
supernova. We follow the supernovae. with spectroscopy at maximum light at the Keck
telescope. and with photometry over the following two months at the CTIO, WIY N, INT. and

(particularly tor the highest redshifts) the Hubble Space Telescope.




Supernova 1998ba
Supernova Cosmology Project
(Perimutter, et al., 1998)
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Supernova
Discovery

(as seen from
Hubble Space
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“ (as seen from
*  telescopes
on Earth)
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Top Cited Articles of All Time (2010 edition)

The 100 most highly cited papers of All Time {2010 edition}
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Reasons to Believe:

1- Result confirmed

by subsequent observations
of high redshift SN-Ia
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Reasons to Believe:

2- Result makes cosmology
consistent with age of the
Oldest objects and
indication for a low density
Universe.



In 1980 the most favoured model was
the so-called cold dark matter model
proposed by Peebles (1982) and others.
This model is based on the Friedmann

solution:
AN
a)y H,
a a’

The CDM model is flat (the spatial part of the metric is euclidean)
And the energy density of the universe is currently dominated
by a matter component with solution:

3 2/3
Decelerated expansion. 2H,

4~ t 3

d~-t"3<0

>



Unfortunately, since the beginning of 1990, several problems
for the CDM model started to emerge.

In particular the age of the universe
in the CDM model was too small if
compared with the age of globular
clusters:

t, = 3 H, = 9.3 Gyrs

While ages for the globular clusters are in the range of 13-16
Billions of years.



Moreover, since the CDM model was flat, it was predicting an
Energy density in the dark matter component equal to the
critical energy density:

3H, p
— o > Q o CDM :1
Pcom = Lk e M 0.

Unfortunately observations from galaxy rotation curves and
velocity dispersion in cluster of galaxies were suggesting a
lower value:
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Finally the CDM model was predicting more galaxy clustering and
clustering evolution than observed.

ACDM g

SCDM [

FCDM [ G

OoCDM

The VIRGO Collaboration 1996



In 1995 Big Bang Model was nearly dead...

natur e International weekly journal of science
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Suparnova Cosmology Project
Parlmutter et al. (1938)

3 | | )/ [ |
lHE&:].".-'.i"l:}:p"].' /

| 63 km 5! Mpc! 14.3 Gyr

Best fit age of universe: 1,=14.5x 1 (0.63/h) Gyr
Best fir in flar universe: t, =149 £ 1 (0.63/h) Gyr



Reasons to Believe:

3- Other observables
as CMB anisotropies are
consistent with an
accelerating universe.
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South Pole Telescope
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http://arxiv.org/abs/1105.3182

supernova Cosmology Froject

mullh, et al.. Ap.J. (2010)
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two independent maps
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Fosalba, Gaztanaga 2004



More than 5 ISW detections!
Mean Signal (uK) Bias Catalog Reference
redshift
Band
0.1 0.70 pm 0.32 | 1.1 2MASS, Afshordi et
infrared al. 2004
0.15 0.35 pm 0.17 | 1.0 APM, optical | Scranton et
al, 2004
0.3 0.26 pm 0.14 | 1.0 SDSS, Fosalba et al.
optical 2004
0.5 0.216 pm 0.1 | 1.8 SDSS Padmanabhan
, et al.
high z,
_ 2004
optical
0.9 0.04 pm 0.02 | 1-2 NVSS+ Boughn &
Crittenden
HEAO, 2004
Radio, X-
Rays




Recent CMB data from ACT are sensitive to lensing and
break geometrical degeneracy.
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Sherwin et al, Phys.Rev.Lett.107:021302,2011



Q, =0.73+0.04

A model without cosmological constant is
now ruled out at more than 18 sigmal



The problem of the Cosmological Constant

Already in 1968 Zeldovich noticed that the
vacuum energy in particle physics could be
a source for a cosmological constant.

“The genie (A) has been let out of the bottle”

Zeldovich

“A new field of activity arises, namely the determination of A"



This anyway would lead to a great problem. The vacuum energy
in particle physics is infinite. We may stop at Planck

Scale but still we have a discrepancy of 120 orders of
magnitude:

Mp
Dyac = j JkZ +m2d3k ~ I\/IE,1 ~10*°p,
0

If we consider supersimmetry we go in the right direction
but we are still 60 orders of magnitude away !

4 60
pvac Npsusy ~ Msusy ~ 10 IOA



But there is a second problem, why the universe is accelerating
Today ? ?
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When did Cosmic acceleration start?

Datasct Zeg |bo = Leg Zare |80 — Ltace to Model Zag to — beg Zgee (B0 — tace oy
WMAP+ [Gyrs] [Grys]| [Gyrs] [Gyrs] [Grys]| [Gyrs]
Alone 0471000 (47155 08670 14 | 70053 (13.87 0% w# —1 IRl T RS [V Bl B R B s X b
+8DSS 0400 |43t h R 0T | 6.7 (13810 Qpar £ 1 g3zt inl3athiloestin| 60t (1a
+2dF 048 00 |48 E (0TI R ] Tt (138 dnfdink #0037 008 (4103 00725005 | 66102 [14.1710L
+GOLD (038100 | 41404 lo.7at00% | 661041138102 N2, #3  [0.40%000 | 43400 lo77tote| 6.840% 14012
+SNLS 045100 [ 4.675 (0837000 | 6.970 [13.870 Ty, >0 037000, 42705 (0737 | 6705 (1410
+all 040 e |43t d et on | 67t naaeth

TABLE II: Constraints on z.., t., 2. and &, at 68%
c.l., under differing theoretical assumptions for the under-

TABLE I: Constraints on z,., t.., 2. and £, at 68%
lving cosmological model.

cl., in comparison with various datasets for ACDM.

Maodel Zeg |0 — teg Zace [to — taee by

[Gyrs] [Grys]| [Gyrs]
w# 10437011 45751 [0.7975 (7] 6810513875
CPL  |044’) 0|45 00 0.0’y 15| 68700 (130703
HM  |04555 15| 46507(0.7955 12| 6710|1300
5Q - —10.80 G ny | 6800513875,

TABLE III: Constraints on zeq, teg, Zace and foce, at 68%
c.l., for different theoretical assumptions about the nature
of the dark energy component.

AM, Luca Pagano, Stefania Pandolfi arXiv:0706.131
Phys. Rev. D 76, 041301 (2007)



Alternatives to Lambda

- Scalar field: it can track the dominant component. Solves
the «Why Now ?» problem. Mass of the field too small (ultralight
and dark particle).

- Modified Gravity: needs to «mimic» Lambda. Few models
survive local constraints on deviation from GR.

- Non homogeneous Universe: disomogeneities should decelerate
the expansion not decelerate (Choudury theorem).

No consistent picture present at the moment.

- Anthropic principle. Landscape scenario....



101 seconds before big rip:
Atoms ripped apart

30 minutes before big rip:
Earth explodes

3 months before big rip:
Solar System breaks apart

60 million years before big rip:
Milky Way destroyed

22 billion years before big rip



COSMOLOGICAL COSTANT vs "Something else”

A+ w(Z
O, = const Px(2) E/OX(O)eXp(?’j dz l—l—; )J
_ Vs. 0
l;; B (I)OA Px =wW(2)py
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op, #0
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Bayesian Model Selection

Current cosmological data are in agreement with more complicated
Dark energy parametrizations, but do we need more parameters ?
More complicated models should give better fits to the data.

In model selection we have to pay the larger number of parameters
(see e.g. Mukherjee et al., 2006):

E=P(D|H)- | P(D|6,H)P(6,H)
con /L

Likelihood

Jeffrey(1961):
l<Aln(E£)<2.5 Substantial

2.5<AIn(E)<5 Strong
5<AIn(E) Decisive
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More Parameters

Current data:
"Substantial”
Evidence

for a cosmological
constant...

P. Serra, A. Heavens,
A. Melchiorri
Astro-ph/0701338
MNRAS, 379, 1,169
2007



Dark Energy- a recent analysis for w(z)

. We sample w(z) in 5 redshift bins up to z=1:

w(z=1), z > 1;
HI[’:J — Wi, Z < Zmazx, 2 € 1% ILZ

= |
_ |
spline, z < zpa2,2 & {2}

. We use CMB (WMAP5,QUAD, ACBAR) data,
BAO DR7, Weak Lensing from CFHFTLS, ISW
data, Supernovae from UNION and
CONSTITUTION datasets.

Serra, Cooray, Holtz, Melchiorri, Pandolfi, Sarkar,
Phys.Rev.D80:121302,2009
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Serra, Cooray, Holtz, Melchiorri, Pandolfi, Sarkar,
Phys.Rev.D80:121302,2009



Parameter

WMAP+UNION+BAO

WMAP+Constitution+BAO

all dataset

future datasets

Qph’ 0.02281 + 0.00057 0.02278 + 0.00058 0.02304 4+ 0.00056 | 0.02270 <+ 0.00015
(. h? 0.1128 + 0.0059 0.1144 + 0.0060 0.1127 +£0.0018 | 0.1100 + 0.0012
Qa 0.728 4+ 0.018 0.715 + 0.017 0.728 + 0.016 0.751 =+ 0.008
. 0.964 + 0.014 0.963 + 0.014 0.971 + 0.014 0.962 <+ 0.004
T 0.085 + 0.017 0.084 + 0.016 0.088 + 0.017 0.084 + 0.05
A% (2.40 £+ 0.10) - 10~ (2.40 +0.10) - 1077 (2.40 +£0.10) - 107?{(2.40 £ 0.10) - 1077
w(z =1.7) —— — —— —1.557 044
w(z =1) —1.7240 5 —1.687012 —1.07+034 —~1.03 +0.10
w(z = 0.75) —0.71+5-42 047034 —0.86+0-52° —0.98 + 0.08
w(z = 0.5) —0.657530 —1.067534 —0.86 + 0.14 —1.00 + 0.05
w(z = 0.25) —1.05 4+ 0.10 ~1.04 £ 0.07 —1.00 £ 0.07 —1.00 £ 0.02
w(z = 0) —0.97 £ 0.22 —0.86 £ 0.13 —1.0215 ¢ —0.99 + 0.05
o8 0.814 + 0.055 0.815 + 0.057 0.810 + 0.024 0.811 + 0.012
Qe 0.272 + 0.018 0.285 + 0.017 0.272 + 0.016 0.249 + 0.008
Hy 70.7 £ 2.0 69.4 + 1.7 70.8 £ 2.0 73.1+1.0
Zreion 10.8+1.4 108+ 1.4 11.0+1.5 10.7 + 0.4
to 13.65 +0.14 13.67 £ 0.15 13.67 +£0.13 13.60 + 0.06

No evidence from current data for deviations from a

cosmological constant

Serra, Cooray, Holtz, Melchiorri, Pandolfi, Sarkar,
Phys.Rev.D80:121302,2009
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Cosmic Vision 2015-2025

These two missions are medium-class missions and are the first in

ESA's Cosmic Vision 2015-2025 Plan.

Dark and bright: ESA chooses
next two science missions

4 October 2011

ESA PR 25 2011 - The powerful
influence of the Sun and the
nature of the mysterious 'dark
energy' motivate ESA’s next two
science missions. Solar Orbiter
and Euclid were selected today
by ESA's Science Programme
Committee for implementation,
with launches planned for 2017
and 2018.

Protecting the Environment Benefits for Europe

16-Oct-2011

More about ESA's
Cosmic Vision...

* Defining the Cosmic
Vision

* Missions beyond
imagination

* ESA's Cosmic Vision
workshop 2004

* Plans for the future

' IAA's vision for the next
steps in exploring deep
space

* How 2 mission is
chosen

Related links

* More on Cosmic Vision
2015-2025
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Euclid

Mapping the geometry
of the dark Universe
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Definition Study Report

European Space Agency

http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=48983#
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THE RUOYAL SWELISH alaDEMY OF SCIENCES

For almost a century, the Universe has been known to be
expanding as a consequence of the Big Bang about 14
billion years ago. However, the discovery that this
expansion is accelerating is astounding. If the expansion
will continue to speed up the Universe will end in ice.

The acceleration is thought to be driven by dark energy,
but what that dark energy is remains an enigma - perhaps
the greatest in physics tfoday. What is known is that dark
energy constitutes about three quarters of the Universe.
Therefore the findings of the 2011 Nobel Laureates in
Physics have helped to unveil a Universe that to a large
extent is unknown to science. And everything is possible
again.
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