

CA On GPU: Strip Extension

Bi-weekly WP2 meeting

22 October 2024

Brunella D'Anzi on behalf of the CA extension group

TRacKing CA+Strips: Motivation

- The Cellular Automaton (CA) is an algorithm designed for parallel architectures, can be used either as the **main track finder algorithm** (eg. at **HLT**) or as a **seeding step** to another algorithm (eg. the Kalman filter method used in **offline reconstruction**).
- Cellular Automaton algorithm is applied only to CMS Pixel detector currently.
- Goal: measure **CA performance** including the Strip information (in a smart way)

Motivation of CA extension to use pixel+strips:

- Momentum resolution improvement
- Fake tracks reduction
- Recover "pixel off" failures

Example: Layers 3 and 4 of BPix-Sector 7 have lost QPLL lock

- recovery attempts have been unsuccessful this config stays in 2024 as well
- 27 associated modules have been masked, corresponding to a region spanning ~24° in φ (around φ=-1)

Observed drop in tracking efficiency

- offline tracking almost unaffected [ratio of D/C : ~20%]: iterative procedure relying on different sets of seeding naturally recover the inefficiency
- online tracking [ratio of D/C : ~50%]: relies only on pixel triplets and quadruplets
 - <u>needed a dedicated extra pixel pair</u> <u>step</u> for recovering the localized inefficiency

Momentum scale resolution

- Relative pT resolution is worst for low pT tracks because of multiple scattering
- Resolution degrades at high pT because tracks are less bend in the magnetic field
- Resolution is best for central tracks and for tracks of O(10) GeV

Impact parameter

It degrades for forward tracks The addition of TIBs + TIDs should help on this!

TRacKing CA+Strips: Progresses

We were starting from a Alpaka working version with degraded performance for **pixelStripQuadruplets** w.r.t. the **basic pixelTriplets tracks** (default now in CMS @HLT) in **high eta region**.

Tasks

- 1. Include a rebase to 14_0_15 🔽
- 2. Usage of the <u>CA autotuning</u> package to work with strips.
- 3. Test different failure scenarios. 🔽
- 4. Open to pixelTriplets to have a compatible pixelTriplets vs (pixelTriplets+pixelStripQuadruplets) comparisons.
- 5. Decreasing of fake rates 🔽
- 6. Ready HLT menu including Strips and on-going timing measurements (for now global strip unpacking)
- 7. Started moving geometry structures to be read at runtime for pixel-only, targetting 14_2_X to avoid HIon conflicts (opened <u>PR45421</u>).

In the following results for pixelTriplets+pixelStripQuadruplets: wp1: higher efficiency, higher fakes+duplicates (according to optimizer) wp2: lower efficiency, lower fakes+duplicates Results on offline reconstruction for the first slides

PATATRACK Disrupt. Design. Deliver.

Starting point from the July Patatrack hackathon

- Pixel Triplets
- Pixel Quadruplets
- Pixel + Strip Quads (4p,3p+1s,2p+2s) (selected wp).
- (Other colors = different strip WPs.)

TRacKing CA+Strips: Graphs

- CA Implemented using Alpaka.
- Only double-sided strip modules are considered
- It requires a list of layers and their pairings (a graph of all the possible connections between layers)
- At least pixel triplets OR pixel+strip quadruplets to build tracks
- CA uses a layer adjacency graph:
 - Only pairs of connected layers will be used to build doublets
 - Jump connections allow track reconstruction with missing hits (dashed lines)
 - Definition of starting layers (solid red lines in the graphs) to star ntuple building requiring a customized Sequential ID to map modules to layers
 - Added jumping connections only in pixel holes ranges (e.g. z in [-28.0
 - 0.])

TRacKing CA+Strips: Scenarios for this study

Presentation from TRK DPG

• 2023D postBPix failure -> Parameter Optimization on tt PU sample (500 evts)

wp1:

[0.0006666666693331634, 0.007516581462169976, 0.001120536625674629, 0.025168217043074842, 0.05000000198682149, 0.083 33333333333, 0.4232014167059476]

wp2:

[0.001030188709485738, 0.007882588743556192, 0.002498967167268065, 0.04850317525835994, 0.05358296209611823, 0.1344 8863622315804, 0.4563450086941161]

FORun3 worst scenarios

> Parameters to tune:

>> Read in input: ['CAThetaCutBarrel', 'CAThetaCutForward', 'CAThetaCutStrip', 'hardCurvCut', 'dcaCutInnerTriplet', 'dcaCutOuterTriplet', 'dcaCutOuterTriplet', 'dcaCutOuterTriplet', 'dcaCutOuterTriplet', 'dcaCutOuterTripletStrip '] (saved in params_to_run.csv)

> Parameter values: > Default values:

Aut Values: -CAThetaCutBarrel: 0.002000000004094920926 -CAThetaCutForward: 0.003000000022677032 -NardCutVCut: 0.003204072249589491 -daCutUnerTriplet: 0.25 -daCutUnerTriplet: 0.25

> > Low bounds:

>> From input (factor=0.333): -CAThetaCutBarcel: 0.0006666666093316342 -CAThetaCutBarcel: 0.001000000008692344 -CAThetaCutBarcel: 0.00100000008692344 -hardCurvCut: 0.0109469749631636 -dcaCutDutBarcel: 0.06000000196862149 -dcaCutDutBarcel: 0.06000000196862149 -dcaCutDutBarcel: 0.06000000196862149

> > High bounds:

>> From input (factor=3.000): -CAThetaCutBarchi 0.060600000284984708 -CAThetaCutForward: 0.00900000007231090 -CAThetaCutForward: 0.00900000007231090 -hardCurvCut: 0.09052216748768473 -dcaCutCutte: 0.4600000178810343 -dcaCutCutterTriplet: 0.750

Params related to triplets building

CA ptmin = 0.55 GeV

Pixel	Strip	Final
Pix v4	Strip v1	140X_mcRun3_2024_realistic_EOR3_TkDPGv1
	Strip v4	140X_mcRun3_2024_realistic_EOR3_TkDPGv2
	Strip v5	140X_mcRun3_2024_realistic_EOR3_TkDPGv3
	Strip v6	140X_mcRun3_2024_realistic_EOR3_TkDPGv4
Pix v8	Strip v1	140X_mcRun3_2024_realistic_EOR3_TkDPGv5
	Strip v4	140X_mcRun3_2024_realistic_EOR3_TkDPGv6
	Strip v5	140X_mcRun3_2024_realistic_EOR3_TkDPGv7
	Strip v6	140X mcRun3 2024 realistic EOR3 TkDPGv8

The tags are following

- Strip v1 SiStripBadComponents_2024FailureScenario_ThermalRunaway20C
- **Strip v2** SiStripBadComponents_2024FailureScenario_ThermalRunaway20C_rphiOnly
- Strip v3 SiStripBadComponents_2024FailureScenario_ThermalRunaway20C_stereoOnly
- Strip v4 SiStripBadComponents_2024FailureScenario_ThermalRunaway25C
- Strip v5 SiStripBadComponents_2024FailureScenario_ThermalRunaway25C_rphiOnly
- o Strip v6 SiStripBadComponents_2024FailureScenario_ThermalRunaway25C_stereoOnly

TRacKing CA+Strips: 2023D scenario

- **Efficiency** compatible with pixelTriplets at high eta as well (within relative **5-10%**)
- pixelTriplets+StripQuadruplets have a **lower fake (relative 20-40%)** than pixelTriplets

Additional plots <u>here</u>, MTV <u>TrackingParticleSelection</u> cuts

TRacKing CA+Strips: 2023D scenario

- Efficiency compatible with pixelTriplets at high eta as well (within relative 5-10%)
- pixelTriplets+StripQuadruplets have a **lower fake (relative 20-40%)** than pixelTriplets
- We get better resolution (relative 10-20%) looking at CA reco tracks with pT min of 0.55 GeV

Additional plots here

TRacKing CA+Strips: 2023D scenario

- Efficiency compatible with pixelTriplets at high eta as well (within relative 5-10%)
- pixelTriplets+StripQuadruplets have a **lower fake (relative 20-40%)** than pixelTriplets
- We get better resolution (relative 10-20%) looking at CA reco tracks with pT min of 0.55 GeV
- Reconstruct less reco tracks due to lower fakes (relative >50%)

Additional plots here

TRacKing CA+Strips: TKDPGv6 scenario

GT: 140X_mcRun3_2024_realistic_EOR3_TkDPGv6 Dataset: RelVaITTbar_14TeV/GEN-SIM-DIGI-RAW/PU_140X_mc Run3_2024_realistic_EOR3_TkDPGv6_RV245_2024-v1/

- Efficiency compatible with pixelTriplets at high eta as well,
- Overall slightly higher fakes as expected. pixelTriplets+StripQuadruplets have a **lower fake (relative 20-40%)** than pixelTriplets

Additional plots here

TRacKing CA+Strips: TKDPGv6 scenario

- Efficiency compatible with pixelTriplets at high eta as well,
- Overall slightly higher fakes as expected. pixelTriplets+StripQuadruplets have a **lower fake (relative 20-40%)** than pixelTriplets
- We get better resolution (relative 10-20%) looking at CA reco tracks with pT min of 0.55 GeV

TRacKing CA+Strips: TKDPGv6 scenario

- Efficiency compatible with pixelTriplets at high eta as well,
- Overall slightly higher fakes as expected. pixelTriplets+StripQuadruplets have a lower fake (relative 20-40%) than pixelTriplets
- We get better resolution (relative 10-20%) looking at CA reco tracks with pT min of 0.55 GeV
- Reconstruct less reco tracks due to lower fakes (relative >50%)

TRacKing CA+Strips: Local Tracks @HLT

Particle Swarm Optimization (PSO) to optimize performance (efficiency, fake+duplication rate) by tuning CA parameters (e.g. azimuthal and spatial cuts for doublets and triplets) using the baseline for End of Run 3 TT PU (worst scenarios for detector ageing)

- Good performance also for HLT local reconstruction

hltPixel tracks plots

TRacKing CA+Strips: Full Tracks @HLT

Implementation working both for offline and online reconstruction

- Similar performance (resolution) when looking at full tracks

Need to look at full tracks with no doublet recovery

Full tracks plots

Global unpacking for strips @HLT:Timing Studies

https://twiki.cern.ch/twiki/bin/viewauth/CMS/TriggerStudiesTiming

hltSiStripRawToClustersFacility.Demand=False Global unpacking

Throughput 530.7 ± 4 evt/s The default no global unpacking gives reduction of < 5% in throughput that can be compensated with CA speed up (to be measured!) Latest release: CMSSW_14_0_15_patch1 , Latest menu: /dev/CMSSW_14_0_0/GRun/V182

hltSiStripRawToClustersFacility.Demand=True Default no global unpacking

552.8 ± 2.8 evt/s

Lesson learned for Phase-2

- Addition of tracker layers at CA step (even using only the double-sided ones) should allow:
 - better resolution results
 - better fake rejections!

Ingredient needed missing once Run 3 is ok:

- Geometry structures to be read at runtime ready also for our customized structure (few months?)

stexpr lav	erPairData	laverPairDa	ta[] =	{		
inner	outer	nhicuts	minz	maxz	maxr	
BPTX1	BPTX2	nhi0n05	-20	20.	20.	3 /
BPTX1	EPTX1Pos	phi0p07	0	30	9	3 /
BDTY1	EDIV1Neg	phi0p07	-30	0	0	1 1
BDTY2	PDTV2	phi0p07,	-22	22	20	11
BDTV2	EDIVIDee	philopos,	10	20.1	7	1' 1
BDIX2,	EDIVINOS,	phiopoo,	20.,	10	7.	1 1
EDIX1Dee	EDIX2Dec	phiopoo,	-30.,	-10.,	/ ·	11/1
FPIXIPOS,	FPIAZPOS,	phiopos,	-70.,	70.,	5.	1 1
PPIXINEg,	FPIXZNeg,	phiopos,	-/0.,	70.,	0.	1, 1
BPIXI,	BPIX3,	ph10p05,	-20.,	20.,	20.	3, 1
BPIXZ,	BPIX4,	ph10p05,	-22.,	22.,	20.	3, /
BPIX1,	FPIX2Pos,	ph10p05,	0.,	30.,	9.	3. 1.
BPIX1,	FPIX2Neg,	ph10p05,	-30.,	0.,	9.	3, /
FPIX1Pos,	TIB1,	phi5deg,	-70.,	70.,	1000.	3, /
FPIX1Neg,	TIB1,	phi5deg,	-70.,	70.,	1000.	3, /
BPIX3,	BPIX4,	phi0p06,	-22.,	22.,	20.	}, /.
BPIX3,	FPIX1Pos,	phi0p06,	15.,	30.,	6.	}, /.
BPIX3,	FPIX1Neg,	phi0p06,	-30,	-15.,	6.	}, /.
FPIX2Pos,	FPIX3Pos,	phi0p05,	-70.,	70.,	5.	}, /.
FPIX2Neg,	FPIX3Neg,	phi0p05,	-70.,	70.,	5.	}, /.
BPIX3,	TIB1,	phi5deg,	-22.,	22.,	1000.	}, /.
BPIX4,	TIB1,	phi5deg,	-22.,	22.,	1000.	}, /.
BPIX4,	TIB2,	phi5deg,	-22.,	22.,	1000.	3. /.
TIB1,	TIB2,	phi5deg,	-55.	55.,	1000.	}, /.
FPIX2Pos,	TIB1,	phi5deg,	-70.,	70.,	1000.	}. /.
FPIX2Neg,	TIB1.	phi5deg,	-70.	70.,	1000.	}. /.
FPIX3Pos.	TIB1.	phi5dea.	-70.	70.	1000.	}. /
FPIX3Pos.	TID1Pos2D.	phi5deg.	-70.	70.	1000.	}. /
FPTX3Pos.	TID2Pos2D.	phi5deg.	-70	70.	1000.	1. /
FPTX3Pos.	TID3Pos2D.	phi5deg.	-79	70.	1000.	1. 1
EPIX3Neg.	TIB1.	phi5deg.	-70	70.	1000.	3. 1
EPIX3Neg	TID1Neg2D	phi5deg.	-70	70	1000.	3. 1
EPIX3Neg	TID2Neg2D	phi5deg,	-70	70	1000.	3. 1
EPTX3Neg	TID3Neg2D	phi5deg,	-70	79.	1000	3 1
TID1Pos2D	TID2Pos2D	nhi0n09	-1000	1000	1000	3 /
TID2Pos2D	TID3Pos2D	phi0n09	-1000	1000	1000	1 1
TID1Neg2D	TID2Neg2D	phi0p00	-1000.	1000.	1000	1 1
TID2Neg2D	TID2Neg2D,	phi0p07,	_1000.,	1000.	1000	11
TID2Neg2D,	TID1Reg2D,	phi6dog	-1000.,	55	1000.	11
TID1,	TID1P0S2D,	phi5deg,	55	00.,	1000.	11/1
TID1,	TID1Dag2D,	phi5deg,	-00.,	G.,	1000.	11
TID2,	TIDIPOSZD,	phi5deg,	55.	00.,	1000.	11/1
PDTV2	TIDINeg2D,	phioneg,	-00.,	0.,	1000.	11/1
BP1A2.	1101.	UN10009.		0	1000.	1. /.
Sim	niePi	VelSt	rın L	nnn	noav h	
				\mathbf{u}		

cor

TRacKing CA+Strips: Work in progress and plans

Ongoing effort:

• Check (physics, timing) performance the menu (offline, not in confDB) in Alpaka without pixel doublet recovery

Further future goals:

- Check how we can split the OT layers to consider intermediate pairs.
 - Differently from the IT, the OT modules are much more "scattered" and we could use a more "fine" splitting w.r.t. the layer one we have now.
- Improving fit:
 - Take into account the material gaps (pixel-pixel, pixel-strip, strip-strip) for multiple scattering.