

Università degli Studi di Padova

FPGA-related activities at UNIPD: TENET and FEROCE

Andrea Triossi on behalf of **Boost Lab**

University of Padova

"This work is partially supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU".

Tensor Networks

- Collection of tensors connected by contractions
- Intuitive graphical language
 - Tensors are notated by shapes
 - Indices are notated by lines emanating from these shapes
 - Connecting two index lines implies a contraction

 Approximate arbitrarily complex many-body quantum systems preserving its most important properties

Tree Tensor Networks for ML

- TN with a tree structure
- Bond dimension (χ_l) controls the expressivity of the TTN

- Input features (N) are mapped in a higher dimensional space (D)
- Number of layers $L = \log_2 N$
- χ_l ideally scales with the layer as D^{2^l}
- Reduce the complexity of the problem artificially forcing $\chi_l = \min(D^{2^l}, \chi_0)$

Methods

- Goal: binary classifier with ultra-low latency
- Training is done in software
- Weights are loaded in the dedicated hardware (FPGA) for inference
- Inference consists of only linear transformations
- FPGA is a programmable devices that combines an array of combinatorial logic blocks with a mesh of interconnections
 - Look-up tables, storage elements, fast carry chains
 - Dedicated hardware for specific functions (RAM, PLL, Ser/Des)
 - Digital Signal Processor (DSP) for arithmetic functions (adder, multiplier, accumulator)
 - Hardware Description Language (HDL) for circuit description
 - High degree of parallelization but limited resources

Training

- Pythonic custom classes for representing TTN as a Torch NN module
- Tested on three datasets
 - Iris N=4, D=2, χ_0 =4 \longrightarrow 99% Accuracy
 - Titanic <u>N</u>=8, D=2, χ_0 =3,4,8,16 \rightarrow 79% Accuracy
 - LHCb b/\overline{b} tagging N=16, D=2, χ_0 =8,16 \rightarrow 62 % Accuracy
- Methods to measure physical quantities
 - Entropy of each link
 - Correlation between features
- Ranking of the input features
 - Complexity reduction of the TTN

Tensor contraction

• Inference means to contract the full tree

- Contraction operation in an order-3 tensor: $c_k = \sum_{ij} a_i b_j W_{ijk}$
- DSP has two inputs → two multiplication stages are needed
- We explored two degree of parallelism for the contraction
 - Full parallel where the exploited number of DSPs is maximal
 - Partially parallel where we introduce a reuse of the DSPs

Execution flow

- Feature map implemented in LUTs
- Node computation is independent
- Each layer is computed in parallel
- Layers are fully pipelined
- After full contraction, output is a scalar

Resources

Total number of DSPs

$$\sum_{l=1}^{L} \chi_{l-1}^{2} \left(\chi_{l} + 1\right) \frac{N}{2^{l}}$$
$$\sum_{l=1}^{L} \left(\chi_{l-1}^{2} + 1\right) \frac{N}{2^{l}}$$

Latency

Total latency

$$\Delta_{DSP} \sum_{l=1}^{L} 2 + \log_2(\chi_{l-1}^2)$$
$$\Delta_{DSP} \sum_{l=1}^{N} \chi_{l-1}^2 + \chi_l + 1$$

Hardware setup

- TTN deployed on hardware accelerator
- Offloading of the TTN inference
- Application on top of Xilinx DMA drivers

Results

- SW/HW comparison
- Classification accuracy vs number of bits
- Actual resources and latency agree with expectations

Dataset	TTN	DSP	BRAM	Latency
Iris	[2,4,1] PP	1%	2%	108 ns
Titanic	[2,4,8,1] FP	8%	19%	72 ns
LHCb	[2,4,8,8,1] FP	36.5%	84%	104 ns

Status and perspective works

- Project presented at <u>ICHEP24</u>
- Paper submitted to «IEEE Transactions on Emerging Topics in Computing»
 - Pre-print available in: <u>arXiv</u>
- Next steps:
 - Integration in trigger systems
 - Move to higher language description (HLS/C++)
 - Exploiting Versal AI Engines
 - Explore possible use cases beyond HEP

Objectives

- Processing power is important as an efficient data movement
- In a DAQ system a large fraction of CPU is engaged in networking
 - Data manipulation (several copies)
 - Latency increase and throughput reduction
- Zero-copy is obtained by adding RDMA layer to the network stack

- FEROCE wants to move the adoption of the network protocol to the data producer
 - Front-end initiates the RDMA transfer
 - No point-to-point connection between front-end and back-end
 - Dynamical switching routing according to node availability

Methodology

- Several network stacks implementing RDMA
 - InfiniBand, RoCE, iWARP...
- RoCE (RDMA over Converged Ethernet)
 - Based on Ethernet networks
 - Industry-standard
 - Multi-vendor ecosystem
 - RoCE v2 packet switching (layer 2 and 3)
- FPGA are already used for implementing network stacks
 - Data center
 - ATLAS

Study of the exiting libraries

- Open-source libraries
 - ETH Zurich Network Stack
 - Entirely written in HLS
 - 10/100 Gbps via Xilinx 10G and 100G MAC IPs
 - xDMA, DDR4 memory and recently HBM support

- This module writes/reads data to/from the Host machine's memory through the xDMA
- An AXI data-mover is used to translate the AXI4 stream into AXI memory mapped (and viceversa)
- Queue Pair's information is exchanged using AXI stream ports
- A debug port is present to send data directly from the FPGA logic TX DATA port

Testing of UDP, TCP and RoCE V2

- Dynamic VCS simulation
 - TUN/TAP
 - DPI-C (Direct Programming Interface) used to link C functions with RTL simulation
 - Modifications in MAC and in DDR interface
 - RDMA WRITE tested successfully with a 10G MAC
 - RoCE firmware simulator sends data to Soft-RoCE end-point

- Results presented at two international conferences TIPP and TWEPP
 - Proceeding <u>here</u>

Hardware implementation

- UDP and TCP stacks deployment on VCU118
 - Good bandwidth results for TCP (> 60Gbps with two connections)
 - Hard to close the timing (even in HLS doesn't close)
 - Porting to Vivado 22.2 was needed (intelligent runs)
- RoCE v2 stacks deployment on VCU118
 - Several issues were found before successfully transmit data (also present in simulation)
 - Occupancy:

RoCEv2 (no retrans)		TX only estimate (no retrans)			
LUT [k]	FF [k]	BRAM	LUT [k]	FF [k]	BRAM
38	49	93	~ 15	~ 15	\sim 30
			-	-	17

RoCEv2

Receiver

Latency and throughput

- Latency is computed averaging the time from each packet's transfer start and its acknowledge (round trip)
- Throughput is computed considering the payload size and the time from first packet sent and last acknowledge received
- First transfer in the QP must be small (warm-up), it's needed to for caching the QP info (NIC side), otherwise packet loss is observed
- After that, no packet loss is observed, need more Transmitter tests though

Transfer size	Throughput [Gbps]	Latency $[\mu s]$
8 kB	30.7	1.6
32 kB	62.8	2.3
64 kB	73.3	3.1
128 kB	80.5	3.3
512 kB	92.9	12.4
5.12 MB	95.8	12.4
51.2 MB	96.0	12.4
512 MB	96.0	12.4

Light-ROCE Tx Module

- Written at RTL (Verilog)
- Only RDMA WRITE with immediate for completion of the transfer
- Open-source network stack for low level layers (UDP, IP, ARP...)
- Slow control based on UDP (setting QP, etc.)
- Tested in dynamic simulation towards soft-ROCE
- Main <u>GitHub code</u>
 - Supported speeds 10G/25G/100G
 - FAST CRC32
 - Support scripts for <u>packet verification</u>
- Talk accepted at CHEP 2024
- Next steps
 - Add re-transmission module (depending on 100G congestion test)
 - Rewrite RoCE Rx module at RTL only to decode ACK/NACK/CNP packets
 - Porting of the ROCE network stack on Microchip FPGA (evaluation board received)

Tests on Light-ROCE

- Occupancy of 10G/25G fw
- Congestion tests on a 10G/25G network
 - Two senders / one receiver link saturation
 - Flow Control (FC) or RoceV2 congestion management (DCQCN) throttle the sender without triggering retransmission
- Throughput and latency measurements for the VCU118 at 10G and 25G
- Next steps
 - Repeat tests on a 100G network

	LUTs (K)	FFs (K)	BRAMs
RoCE + ICRC	5.4	6.3	5
Light-ROCE	14	16	11
Full ETH stack	38	49	93

	Latency (us)	Throughput (Gbps)
Point to point @ 10G	4.6	9.3
Congestion @ 10G (PMTU 2048)	7.8	9.3
Congestion @ 10G (PMTU 4096)	13.2	9.64
Point to point @ 25G	4.5	24.1
Congestion @ 25G	20	24.1

Prospective applications

- CMS
 - L1T Scouting is a project aiming at acquiring the L1 primitives at the full bunch crossing rate
 - It is meant for HL-LHC but a demonstrator based on commercial electronic is already deployed
 - At present as DAQ link it adopts a light version of the TCP/IP protocol at 100G → move to light ROCE

