
FPGA-related activities at UNIPD:
TENET and FEROCE

Andrea Triossi on behalf of Boost Lab
University of Padova

“This work is partially supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing,

funded by European Union – NextGenerationEU”.

http://boostlab.dfa.unipd.it/

Tensor Networks

• Collection of tensors connected by contractions
• Intuitive graphical language

• Tensors are notated by shapes
• Indices are notated by lines emanating from these shapes
• Connecting two index lines implies a contraction

• Approximate arbitrarily complex many-body quantum systems
preserving its most important properties

𝑣𝑖 𝑀𝑖𝑗 𝑇𝑖𝑗𝑘

𝑗

𝑀𝑖𝑗𝑣𝑗

𝜓
MPS

2

TENET

Tree Tensor Networks for ML

• TN with a tree structure
• Bond dimension (𝜒𝑙) controls the expressivity of the TTN

• Input features (𝑁) are mapped in a higher dimensional space (𝐷)
• Number of layers 𝐿 = log2𝑁

• 𝜒𝑙 ideally scales with the layer as 𝐷2𝑙

• Reduce the complexity of the problem artificially forcing 𝜒𝑙 = min(𝐷2𝑙 , 𝜒0)
3

TENET

Methods

• Goal: binary classifier with ultra-low latency
• Training is done in software
• Weights are loaded in the dedicated hardware (FPGA) for inference
• Inference consists of only linear transformations
• FPGA is a programmable devices that combines an array of

combinatorial logic blocks with a mesh of interconnections
• Look-up tables, storage elements, fast carry chains
• Dedicated hardware for specific functions (RAM, PLL, Ser/Des)
• Digital Signal Processor (DSP) for arithmetic functions (adder, multiplier,

accumulator)
• Hardware Description Language (HDL) for circuit description
• High degree of parallelization but limited resources

4

TENET

Training

• Pythonic custom classes for representing TTN as
a Torch NN module

• Tested on three datasets
• Iris – N=4, D=2, 𝜒0=4 99% Accuracy
• Titanic – N=8, D=2, 𝜒0=3,4,8,16 79% Accuracy
• LHCb 𝑏/𝑏 tagging – N=16, D=2, 𝜒0=8,16 62 %

Accuracy
• Methods to measure physical quantities

• Entropy of each link
• Correlation between features

• Ranking of the input features
• Complexity reduction of the TTN

TENET

Tensor contraction

• Inference means to contract the full tree

• Contraction operation in an order-3 tensor: 𝑐𝑘 = σ𝑖𝑗 𝑎𝑖𝑏𝑗𝑊𝑖𝑗𝑘

• DSP has two inputs two multiplication stages are needed
• We explored two degree of parallelism for the contraction

• Full parallel – where the exploited number of DSPs is maximal
• Partially parallel – where we introduce a reuse of the DSPs

6

TENET

Execution flow

• Feature map implemented in LUTs
• Node computation is independent
• Each layer is computed in parallel
• Layers are fully pipelined
• After full contraction, output is a scalar

1 2 3

7

TENET

Resources

𝑙=1

𝐿

𝜒𝑙−1
2 (𝜒𝑙 + 1)

𝑁

2𝑙

𝑙=1

𝐿

(𝜒𝑙−1
2 + 1)

𝑁

2𝑙

Total number of DSPs

TENET

Latency

Δ𝐷𝑆𝑃

𝑙=1

𝐿

2 + log2(𝜒𝑙−1
2)

Δ𝐷𝑆𝑃

𝑙=1

𝑁

𝜒𝑙−1
2 + 𝜒𝑙 + 1

Total latency

TENET

Hardware setup

PCIe

FPGA

Server KCU1500
Kintex Ultrascale

PCIe
DMA TTN

• TTN deployed on hardware accelerator
• Offloading of the TTN inference
• Application on top of Xilinx DMA drivers

AXI Stream

Config
RegistersAXI

Lite

10

TENET

Results

• SW/HW comparison
• Classification accuracy vs number of bits
• Actual resources and latency agree with

expectations

LHCb

LHCb

TENET

Status and perspective works

• Project presented at ICHEP24

• Paper submitted to «IEEE Transactions on Emerging Topics
in Computing»
• Pre-print available in: arXiv

• Next steps:
• Integration in trigger systems

• Move to higher language description (HLS/C++)
• Exploiting Versal AI Engines

• Explore possible use cases beyond HEP

TENET

https://indico.cern.ch/event/1291157/contributions/5889589/
https://arxiv.org/abs/2409.16075

Objectives

• Processing power is important as
an efficient data movement

• In a DAQ system a large fraction of
CPU is engaged in networking
• Data manipulation (several copies)
• Latency increase and throughput

reduction

• Zero-copy is obtained by adding
RDMA layer to the network stack

• FEROCE wants to move the adoption of the network protocol to the
data producer
• Front-end initiates the RDMA transfer
• No point-to-point connection between front-end and back-end
• Dynamical switching routing according to node availability 13

FEROCE

Methodology

• Several network stacks
implementing RDMA
• InfiniBand, RoCE, iWARP…

• RoCE (RDMA over Converged
Ethernet)
• Based on Ethernet networks
• Industry-standard
• Multi-vendor ecosystem
• RoCE v2 packet switching

(layer 2 and 3)
• FPGA are already used for

implementing network stacks
• Data center
• ATLAS

14

FEROCE

Study of the exiting libraries

15

• Open-source libraries
• ETH Zurich Network Stack

• Entirely written in HLS
• 10/100 Gbps via Xilinx 10G and 100G MAC IPs
• xDMA, DDR4 memory and recently HBM support

• This module writes/reads data to/from the
Host machine’s memory through the xDMA

• An AXI data-mover is used to translate the
AXI4 stream into AXI memory mapped (and
viceversa)

• Queue Pair’s information is exchanged using
AXI stream ports

• A debug port is present to send data directly
from the FPGA logic TX DATA port

FEROCE

Testing of UDP, TCP and RoCE V2

16

• Dynamic VCS simulation
• TUN/TAP
• DPI-C (Direct Programming Interface)

used to link C functions with RTL
simulation

• Modifications in MAC and in DDR
interface

• RDMA WRITE tested successfully with a
10G MAC

• RoCE firmware simulator sends data to
Soft-RoCE end-point

• Results presented at two international conferences TIPP and TWEPP
• Proceeding here

FEROCE

https://iopscience.iop.org/article/10.1088/1748-0221/19/03/C03038

• UDP and TCP stacks deployment on
VCU118
• Good bandwidth results for TCP (> 60Gbps

with two connections)
• Hard to close the timing (even in HLS

doesn’t close)
• Porting to Vivado 22.2 was needed

(intelligent runs)

• RoCE v2 stacks deployment on VCU118
• Several issues were found before successfully

transmit data (also present in simulation)
• Occupancy:

17

Hardware implementation

FEROCE

Latency and throughput

• Latency is computed averaging the time from each packet’s transfer start and its
acknowledge (round trip)

• Throughput is computed considering the payload size and the time from first packet
sent and last acknowledge received

• First transfer in the QP must be small (warm-up), it’s needed to for caching the QP
info (NIC side), otherwise packet loss is observed

• After that, no packet loss is observed, need more
tests though

18

FEROCE

Light-ROCE Tx Module

• Written at RTL (Verilog)
• Only RDMA WRITE with immediate for completion of the transfer
• Open-source network stack for low level layers (UDP, IP, ARP…)
• Slow control based on UDP (setting QP, etc.)
• Tested in dynamic simulation towards soft-ROCE
• Main GitHub code

• Supported speeds 10G/25G/100G
• FAST CRC32
• Support scripts for packet verification

• Talk accepted at CHEP 2024
• Next steps

• Add re-transmission module (depending on 100G congestion test)
• Rewrite RoCE Rx module at RTL only to decode ACK/NACK/CNP packets
• Porting of the ROCE network stack on Microchip FPGA (evaluation board received)

19

FEROCE

https://github.com/Gabriele-bot/100G-verilog-RoCEv2-lite/tree/main
https://github.com/Gabriele-bot/FAST_CRC32
https://github.com/Gabriele-bot/100G-verilog-RoCEv2-lite/blob/main/Scripts/Decode_tap_data.py
https://indico.cern.ch/event/1338689/contributions/6011571/

Tests on Light-ROCE

• Occupancy of 10G/25G fw
• Congestion tests on a 10G/25G

network
• Two senders / one receiver link

saturation
• Flow Control (FC) or RoceV2

congestion management (DCQCN)
throttle the sender without triggering
retransmission

• Throughput and latency
measurements for the VCU118 at
10G and 25G

• Next steps
• Repeat tests on a 100G network

20

Latency (us) Throughput
(Gbps)

Point to point @ 10G 4.6 9.3

Congestion @ 10G (PMTU 2048) 7.8 9.3

Congestion @ 10G (PMTU 4096) 13.2 9.64

Point to point @ 25G 4.5 24.1

Congestion @ 25G 20 24.1

LUTs (K) FFs (K) BRAMs

RoCE + ICRC 5.4 6.3 5

Light-ROCE 14 16 11

Full ETH stack 38 49 93

FEROCE

Prospective applications

• CMS
• L1T Scouting is a project aiming at acquiring the L1

primitives at the full bunch crossing rate
• It is meant for HL-LHC but a demonstrator based

on commercial electronic is already deployed
• At present as DAQ link it adopts a light version of

the TCP/IP protocol at 100G move to light ROCE

21

FEROCE

	Slide 1: FPGA-related activities at UNIPD: TENET and FEROCE
	Slide 2: Tensor Networks
	Slide 3: Tree Tensor Networks for ML
	Slide 4: Methods
	Slide 5: Training
	Slide 6: Tensor contraction
	Slide 7: Execution flow
	Slide 8: Resources
	Slide 9: Latency
	Slide 10: Hardware setup
	Slide 11: Results
	Slide 12: Status and perspective works
	Slide 13: Objectives
	Slide 14: Methodology
	Slide 15: Study of the exiting libraries
	Slide 16: Testing of UDP, TCP and RoCE V2
	Slide 17: Hardware implementation
	Slide 18: Latency and throughput
	Slide 19: Light-ROCE Tx Module
	Slide 20: Tests on Light-ROCE
	Slide 21: Prospective applications

