

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università della Ricerca

Leveraging distributed resources through high throughput analysis platforms for enhancing HEP data analyses

On behalf of the ATLAS and CMS Collaborations CHEP2024, 19-25 Oct 2024, Krakow

ICSC Italian Research Center on High-Performance Computing. Big Data and Quantum Computing

Centro Nazionale di Ricerca in HPC, **Big Data and Quantum Computing**

Adelina D'Onofrio¹, Tommaso Diotalevi^{1,3}, Francesco Giuseppe Gravili^{1,5}, Salvatore Loffredo^{1,2}, Elvira Rossi^{1,2}, <u>Federica Maria</u> <u>Simone^{1,4}</u>, Bernardino Spisso¹ on behalf of the ATLAS and CMS Collaborations

INFN, 2 University Federico II, 3 University of Bologna, 4 Polytechnic Bari, 5 Università del Salento

Missione 4 • Istruzione e Ricerca

Outline

Motivations Test infrastructure Analysis use-cases: Conclusions

- Search for SUSY signatures at ATLAS
- Flavor physics and search for rare decays at CMS
 - Preliminary scalability results

Motivations

- Challenges of LHC, and HL-LHC are pushing to re-think the HEP computing models
 - Ş Impact on several aspects, from software to the computing infrastructure

Higher rates of collision events

Similar trends for ATLAS and CMS HL-LHC projections

Higher demand for computing and storage resources

Need to:

- Optimize the usage of CPU and storage
- Promote the usage of better data formats
- Develop new analysis paradigms!
- New software based on declarative programming and interactive workflows
- Distribute on geographically separated resources

HEP data analysis with ICSC

*trigger rates for previous Runs, now factor $3 \div 5$ higher, will further scale in HL-LHC

m:			237 /	8192	MB
	0.		2 2	0	°o
6	Sing	ularity	kernel	0	0
					ă
	Q				C.
				l	
ers	ions	foun	d	1	
Col	19	HNL :	analys	is.ipv	nb

- After connecting to an entrypoint URL, the user reaches a <u>Jupyterhub</u> instance that, after authentication and authorization via <u>INDIGO-IAM</u>, allocates the required resources for the user's working area.
- The jupyterhub is deployed on a Kubernetes (k8s) cluster with **128 vCPUs and 258 GB**, divided into 8 nodes configured via <u>RKE2</u>

- The deployment of the Kubernetes resources is handled via HELM charts in the official Spoke2 Jhub HELM repo
- This allows for a scalable and faulttolerant deployment of the available resources

- Jupyterlab interface is flexible and customizable:
 Includes specific plugins (e.g. <u>Dask</u>)
- Working environment highly customizable using <u>Docker</u> containers allowing for experiment specific software

- Ideal environment for testing interactive analysis and validating new frameworks, e.g. the multithreading features of ROOT RDataFrame
- The <u>Dask Labextension</u> provides a user-friendly monitoring dashboard
- More in the <u>official docs</u>!

File Edit View Run Kernel Tabs Settings Help disk/das/board/de26/492-bc56-4697-8164-88200ad5450 Q. AddressArte Time PER ACTION Q. BANDWOTH TYPES CUUSTER MARP CLUSTER MARP CUUSTER MARP CONTENTION CONTENTION Memory Use (I CONTENTION CONTENTION GROUP STOCK GROUP STOCK MARP GROUP STOCK GROUP STOCK GROUP STOCK GROUP STOCK SS Time PERFACT MEMOORY GROUP STOCK GROUP STREE Time PERFACT GROUP STREE GROUP STREE GROUP STREE Time PERFACE GROUP STREE GROUP STREE			cluster map	
	X Workers X + million million memory K + million memory K K K % M Memory K K K K % M Memory K K K K K % M Memory K K K K K % M Memory K K	• ret mad net sets dek mad dek	worker	
BCHEDULER BYSTEM NAX, STREAM WORKERS WORKERS CPU THASSERIES WORKERS DISK WORKERS NEWDOW CLUSTERS CLUSTERS CLUSTERS CLUSTERS Mander Of Ownlaws Amongy 1000 (CHEL Amongy 1000 (CHEL Mander Of Workers S Mander Of Workers S Mander Of Workers S Mander Of Workers S Mander Of Workers S <td>address nutre; 006er5-8-default-worker-23335668; tsp://0.42.656445129 0.000 006er5-8-default-worker-dec/813680; tsp://0.42.10.305.42533 0.000 006er5-8-default-worker-dec/813681; tsp://0.42.10.8264477 0.000 006er5-8-default-worker-dec/813681; tsp://0.42.8123 0.6190 006er5-8-default-worker-dec/813681; tsp://0.42.3181.40313 0.6190</td> <td>00g_rtmrval 1301833343005 224395548004 887351944358 497321535202 7008055622438</td> <td>•</td> <td></td>	address nutre; 006er5-8-default-worker-23335668; tsp://0.42.656445129 0.000 006er5-8-default-worker-dec/813680; tsp://0.42.10.305.42533 0.000 006er5-8-default-worker-dec/813681; tsp://0.42.10.8264477 0.000 006er5-8-default-worker-dec/813681; tsp://0.42.8123 0.6190 006er5-8-default-worker-dec/813681; tsp://0.42.3181.40313 0.6190	00g_rtmrval 1301833343005 224395548004 887351944358 497321535202 7008055622438	•	

- computation are hosted in the same k8s cluster as
- allowing for heterogeneous resources (HTC/HPC/Cloud) (see more in backup)

Benchmark interactive analyses

ATLAS use-case

- Three different analysis in the *Run 2 paper*, already published, according to mass splitting between stop (\tilde{t}_1) and neutralino ($\tilde{\chi}^0_1$), allowing different decay modes:
 - $2 \text{ body} \rightarrow \Delta m > m_t$ Ş
 - Ş $3 \text{ body} \rightarrow m_W + m_b < \Delta m < m_t$

4 body $\rightarrow \Delta m < m_W + m_b$ used as a benchmark Ģ

- Common final state signature: 2 OS leptons from W* decays, b-jets and missing transverse energy
- Cut-based analysis

SUperSYmmetry: Beyond Standard Model (BSM) theory

4-body search workflow

F	Prelimi	nary res	ults ទ្រូ 100 រដ្ឋ
	Defi	ned Metric	cecution 80
	Overall execution	Time elapsed from the start of the execution (execution triggered) to	لَّسُ 60 40
	time	the end of execution	20
	Exploiting the	distributed approach,	
	the execution	time improves wrt the	
	standard/seria	al approach if we iterat	e
	over a signific	ative number of	
	systematic va	riations (each step in	
	the x-axis incl	udes previous	
	contributions)		

LocalCluster: Dask multithread execution on local machine (max 8 cores, 16 GiB) Distributed: Dask distributed execution on remote workers

Scheduler and Working Nodes Reports

Distributed approach

Connecting to working nodes

- Out of 9 worker nodes, we get about 4% average CPU occupancy on each worker node
- Limited CPU consumption due to the easy cut&count operations

	1		
			١
		L	/

CMS use-case

Search for $\tau \to 3\mu$ decays, which have very small SM branching fractions $BR_{SM} \sim O(10^{-55})$, while being predicted with sizable BR in several BSM scenarios $BR_{BSM} \sim \mathcal{O}(10^{-10} \div 10^{-8})$

- au leptons produced in D and B meson decays provide large statistics at LHC experiments, but are only accessible with **low-p_T muon triggers**
- Analysis of Run 2 data recently published, stat. limited
 - \rightarrow benefitting from inclusive low-p_T muon L1 trigger in **Run 3**
 - → technical challenge: **new datasets are x3 times heavier**

Lepton Flavor Violation in the charged sector: $\tau \rightarrow 3\mu$

CMS use-case

	Contents lists available at ScienceDirect	
	Physics Letters B	PHYSICS LETTERS B
ELSEVIER	journal homepage: www.elsevier.com/locate/physletb	
letter		
letter Search for the lep	ton flavor violating $\tau \rightarrow 3\mu$ decay in proton-proton	Check for updates
Letter Search for the lept collisions at $\sqrt{s} =$	ton flavor violating $\tau \rightarrow 3\mu$ decay in proton-proton 13 TeV	Check for updates
Letter Search for the lep collisions at $\sqrt{s} =$ The CMS Collaboration	ton flavor violating $\tau \rightarrow 3\mu$ decay in proton-proton 13 TeV	Check for updates

Search for $\tau \to 3\mu$ decays, which have very small SM branching fractions $BR_{SM} \sim O(10^{-55})$, while being predicted with sizable BR in several BSM scenarios $BR_{BSM} \sim \mathcal{O}(10^{-10} \div 10^{-8})$

- τ leptons produced in D and B meson decays provide large statistics at LHC experiments, but are only accessible with **low-p_T muon triggers**
- The normalisation channel used as a benchmark: $D_s^+ \rightarrow \phi(\mu\mu)\pi^+$ \rightarrow cut-based analysis + mass fit for measuring the D_s^+ yield in data

Lepton Flavor Violation in the charged sector: $\tau \rightarrow 3\mu$

$D_s^+ \rightarrow \phi(\mu\mu)\pi^+$ analysis workflow

- Legacy: approach Loop-based analysis implemented using ROOT TTree: MakeClass
- New: Ntuples read as RDataFrame, almost all operations "lazy" \rightarrow no loop triggered till the end
 - going distributed using ROOT RDataFrame distributed features, with Dask backend.

ROOT ntuples • Skimmed data, events with 2µ+1track final state • Saving only physics objects of interest

• Plain data format, ~ 5 GB / fb-1, stored on eos

- Define high-level variables
- Apply scale factors and corrections
- Apply **selections**, select best D_s candidate per event
- **Fit** the 2µ+1track invariant mass

Analysis

• split computation in batches of input files, run separately as HTCondor jobs, gather the output rootfiles

Preliminary results

- Stress test at high CPU and memory occupancy
- Stable performance, linearly scaling with the input dataset size
- Dataset size ~ 100 GiB is
 representative of ~15 /fb of Run3
 data for this specific analysis

- Significant improvement in execution time *wrt* the standard/serial approach
- The facility allows for dynamically scaling the resources, here testing the performance at fixed #cores and memory, varying the dataset size

Conclusions & Next Steps

- HL-LHC poses significant challenges to HEP experiments in terms of storage and computing resources An interactive high throughput platform has been developed in the framework of the "HPC, Big Data e Quantum"
- Computing Research Centre" Italian National Center (ICSC)
 - offers users a modern interactive web interface based on JupyterLab
 - experiment-agnostic resources
 - based on a parallel and geographically distributed back-end
- Interactive analyses feasibility studies on INFN cloud succeeded Performance evaluated using the high-rate platform HEP analysis use-case explored from the CMS and ATLAS Collaborations

testing of the analysis workflows.

This work is (partially) supported by ICSC – Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing, funded by European Union – NextGenerationEU

Medium-long term goals: Expand the current pool of resources by a factor of 5 in the upcoming months, to perform scale

Thank you!

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

- Offloading strategy: resources used to offload the computation are hosted in the same k8s cluster as the jupyter interface, via DASK KubeCluster
- Under development: schedule worker processes spawning on multiple remote sites dynamically and transparently \rightarrow Implementation on heterogeneous resources (HTC/HPC/Cloud)

InterLink provides execution of a Kubernetes pod on almost any remote resource. Resources visible to the user thanks to an HTCondor overlay

Cl triggered CMS analysis execution on the High Rate platform

Check out the **poster** by Matteo Bartolini "Continuous integration of analysis workflows on a distributed analysis facility"

xrdfs+voms auth

EOS

Run3 CMS Luminosity

