

Finanziato dall'Unione europea NextGenerationEU

$W \rightarrow 3\pi$ Scouting-Analysis Firmware Implementation

Francesco Brivio Paolo Dini Simone Gennai

Bi-Weekly WP2 Meeting 24 September 2024

COADIBE

Outline

- Spoke-2 HPC FPGA Bubbles
 - The Milano-Bicocca Cluster
 - FPGA and FPGA clusters use cases

- The $W \rightarrow 3\pi$ decay use case
 - Analysis flow
 - Firmware implementation
 - Preliminary estimates on S/B
 - Next steps

• Summary

opea Ministero e dell'Università e della Ricerca

Project placed between the Working Packages 2 and 4

- Ultra-fast ML inference
- High throughput analysis
- ...

- FPGA boards and Clusters
- GPU Clusters
- ...

HPC "Bubbles" & The Milano-Bicocca FPGA Cluster

HPC "Bubbles" Model

- Several distributed local clusters seen as opportunistic resources to be accessed on demand via the INFN Cloud infrastructure
- Accessed through
 - PCI board via Virtual Machine
 - Direct access as local user to access the "full mesh" configuration of the boards (optical fiber cabling)
- Milano-Bicocca Cluster
 - 16 FPGA boards (8 Xilinx + 8 Intel)
 - High-speed internal connection thanks to dedicated QSFP ports and breakout optical links

Possibility to realize a "full mesh" network following the LHCb RETINA project

Sito	Nodi CPU	Nodi GPU	Nodi FPGA	Nodi Storage
CNAF	26	30	4	52
BA	24	6	0	32
MI-BI	0	0	4	0
PI	8	0	0	0
то	6	6	0	0
LNGS	0	6	0	12
NA	18	1	2	8
RM1	12	0	0	0
PD/LNL	10	6	0	0
LNF	20	6	0	6
СТ	12	0	0	8
МІ	4	0	0	0
TOTALE	160	61	10	118

Figura 1. Esempio di rete full-mesh per le board Terasic

Figura 2. Esempio di rete full-mesh per board Xilinx U55C

Why FPGAs

- Field Programmable Gate Array (FPGA)
 - Re-configurable integrated circuits
 - High efficiency for a fairly good flexibility
- Advantages of FPGA
 - Easily reconfigurable
 - Deterministic latency: repeatable and predictable
 - High throughput (CMS Phase-2 L1 Trigger expected to processes 5% of total internet traffic) thanks to:
 - Resource parallelism: can run several algorithms in parallel
 - Pipeline parallelism: can accept new data at ~each clock
- Additionally
 - Commonly used in High Energy Physics experiments
 - Growing interest in private/industrial sector
 - Especially linked to ultra-fast inference for ML
 - $\circ~$ Less power consumption with respect to GPUs

Туре	Hardware	Accuracy	Inference Time	Max Throughput	Power	Throughput/W
CPU	2 x Xeon 2.1Ghz, 8 core	0.91	88 ms	11.36 img/s	~30W	0.38
FPGA	Arria 10 PAC - FP16	0.91	14 ms	84.44 img/s	~31W	2.72
	Arria 10 PAC - FP11	0.88	7.5 ms	187.21 img/s	~31W	6.03
GPU	GTX 1080	0.90	7.5 ms	192 img/s	~180W	1.06

Accelerated ML for HLT Trigger

Hamza Javed, Maurizio Perini, Jennifer Ngadiuba, Vladimir Loncar

FPGA Cluster Use Cases

- Several use cases planned for the MIB FPGA cluster
 - Spread among different INFN sites and different experiments
 - LHCb Experiment (MIB and Pisa)
 - Mainly focussed on the <u>RETINA project</u> for online tracking
 - Comparison of performances in the cluster wit respect tp what currently installed in the LHCb VELO system
 - Development of the "full mesh" configuration to study performances in the second tracking detector (SciFi)
 - System expected to run in production already in Run4 with same FPGA boards
 - INFN Perugia
 - Development and testing of the <u>BondMachine</u> "distributed architecture"
 - CMS (mostly MIB)
 - Development of a Transformer for Tau reconstruction in the Level-1 trigger, including model distillation and porting on FPGA
 - <u>CMS Phase-2 Scouting system</u>

Example of "full mesh" configuration with optical links among different FPGA boards currently installed in Point 8 (LHCb)

The CMS Phase-2 Scouting System

The High-Luminosity Phase of the Large Hadron Collider will deliver data to the experiment with higher energy and especially at a **much higher luminosity**, with between 5 and 7.5 times the number of collisions with respect to the nominal LHC design

- All the experiments must exploit this huge amount of data as best as possible
- The **CMS experiment**, among the many upgrades, is developing an innovative trigger program based on the *Scouting System*
- 40 MHz Scouting core idea
 - Acquire & analyze the L1 Trigger information for <u>all collisions</u>, happening at a rate of 40 MHz

- **Target:** Look for signatures identifiable with just L1T info, that would evade the standard CMS $L1T \rightarrow HLT \rightarrow Offline$ chain:
 - Too large "irreducible" backgrounds, e.g. narrow resonances of unknown mass
 - Signal identification requires algorithm that can't fit the L1T constraints (combinatorics, complex NN...)
 - Signal identification requires time-correlation across several *Bunch-Crossings* (e.g. long-lived BSM)

The $W \rightarrow 3\pi$ Analysis

The search for the $W \rightarrow 3\pi$ decay represents an <u>excellent test-bench</u> for designing future Phase-2 scouting analyses

- Extremely rare process predicted by the Standard Model
 - Most recent (CMS) results can only set an upper limit on the branching ratio of BR < ~10⁻⁶ (<u>PhysRevLett.122.151802</u>)
 - The large statistics provided by scouting-data is well suited for studying such a rare process
- Idea is to design an entirely FPGA-based analysis
 - Full event processing from raw data up to the reconstructed M_{W}
 - Algorithm with <u>ultra-low latencies</u> to accommodate a rate of 40 MHz
- Practically
 - Exploit the ML-based approaches to improve selection efficiency
 - Translate analysis into firmware using state of the art libraries: <u>Vitis-HLS</u>, <u>hls4ml</u>, <u>Conifer</u>...
- Strong synergy with the PNRR ICSC Spoke-2 project on HPC-Bubbles with FPGA clusters
 - Clusters with both Xilinx and Intel boards distributed in several INFN sites and shared via Cloud

Analysis Flow

- Design is strictly linked to firmware implementation
 - Not all possible algorithms can be ported to firmware (without paying a price in latency or resources)
 - L1 scouting system offers a good opportunity to have dedicated boards and more relaxed timing constraints
 - The MIB FPGA cluster is a perfect system to benchmark and study feasibility of such analyses
- Analysis following the "standard" flow, but with some needed simplifications, e.g.
 - Looser selections
 - Avoiding combinatorial

🚰 Italiadomani 🛛 🗙 🕻 ICS

- Smart choice of input features for ML
- 0

Pinanziato dall'Unione suropea Mestionerenticollui

. . .

Firmware Overview

+	+		+	
1	Latency			
Module	Clocks	Ti	ming	
+	┝ ─── ─ ┼		+	
masker	0		0 ns	
slimmer2	0		0 ns	
orderer7f	119	0.	595 us	
merger7f	17	85.	000 ns	
<pre> get_triplet_inputs </pre>	17	85.	000 ns	
<pre> decision_function_1 </pre>	8	40.	000 ns	
+	⊦ +	+	+	
Module	BRAM_18K	DSP	FF	LUT
++	+	+	+	
masker	0	0	0	13104
slimmer2	0	0	0	10400
orderer7f	0	0	1774	46784
merger7f	0	0	44576	98207
<pre> get_triplet_inputs </pre>	2	9	508	2168
decision_function_1	0	0	19447	56669
+ Utilization (%)	+ ~0	+ 0~	+ 4	27

- Overall view of the firmware implementation
 - For the (almost) full chain: from inputs to selecting the triplet with highest BDT score
 - $\circ~$ Total Timing: 303 clocks (~1.5 $\mu s)$ Total Resources: 27% of LUTs and 4% of FFs
- Firmware split in "kernels"
 - Following the analysis flow shown before
 - Each analysis step is run sequentially, but highly parallelized within the kernel itself
- Two approaches being followed
 - $\circ~$ Latency-optimized \rightarrow more resources
 - Resource-optimized \rightarrow more latency

(here only showing the second one for sake of time)

Firmware Overview: Pion Selections

+	+-		+	
Î	Late	ncy	1	
Module	Clocks	Ti	ming	
t	++· 01		+ 0 nsl	
slimmer2	0		0 ns	
orderer7f	119	0.	595 us	
merger7f	17	85.	000 ns	
<pre> get_triplet_inputs </pre>	17	85.	000 ns	
decision_function_1	8	40.	000 ns	
+ Module	BRAM_18K	+ DSP +	+- FF	LUT
masker	0	0	0	13104
slimmer2	0	0	0	10400
orderer7f	0	0	1774	46784
merger7f	0	0	44576	9820
get_triplet_inputs	2	9	508	2168
<pre> decision_function_1 </pre>	01	01	19447	56669
	v			
+		+ ~0	+- 4	2

Find the optimal selections allowed by the hardware, while maintaining highest possible gen-matching efficiency.

- Selections applied to pions are "minimal"
 - Detector acceptance: $|\eta| < 2.4$
 - ParticleID: only pions and electrons

• No cut on p_{π}

 Selecting only the 10 highest p_T candidates

(instead of all 208 possible) yields nonetheless to an efficiency ~ 91%

• For a latency which is still below 1 clock

Gen-match efficiency of selecting # highest p _T reco pions						
# Pions	Numerator	Denominator	Eff			
3	6148	8910	0.690			
4	7308	8910	0.820			
5	7675	8910	0.861			
6	7827	8910	0.878			
7	7954	8910	0.893			
8	8016	8910	0.900			
9	8064	8910	0.905			
10	8107	8910	0.910			

Firmware Overview: Sorting

+	++		+	
1	Latency			
Module	Clocks	T	iming	
+ masker	++ 0		+ 0 ns	
slimmer2	0		0 ns	
orderer7f	119	0.	595 us	
merger7f	17	85.	000 ns	
<pre> get_triplet_inputs</pre>	17	85.	000 ns	
<pre> decision_function_1</pre>	8	40.	000 ns	
+	++		++	
Module	BRAM_18K	DSP	FF	LUT
+	++	+	++	
masker	0	0	0	13104
slimmer2	0	0	0	10400
orderer7f	0	0	1774	46784
merger7f	0	0	44576	98207
<pre> get_triplet_inputs</pre>	2	9	508	2168
<pre> decision_function_1</pre>	0	0	19447	56669
+	++	+	++	
Utilization (%)	~0	~0	4	27
+	++			

- Sorting all 208 possible candidates is the most expensive kernel
 - Several approaches tested (bubble-sort, iterative sorting...)
 - Chosen bitonic sorting and merging
 - Split candidates into 8 sub-arrays
 - Sort individually
 - Merge them maintaining order
- Nevertheless most of the latency and resources are consumed in this step
 - $\circ~$ Taking up ~17% of LUTs tables and 2% of FFs
 - Most of the clocks
 - \rightarrow Further optimization ongoing!

Firmware Overview: Triplet Combinatorial

+	⊦ −−−−− +		+	
1	Late	1		
Module	Clocks	Ti	ming	
+	+ 0		+ 0 ns	
slimmer2	0		0 ns	
orderer7f	119	0.	595 us	
merger7f	17	85.	000 ns	
get_triplet_inputs	17	85.	000 ns	
decision_function_1	8	40.	000 ns	
+	⊦ ł	+		+
Module	BRAM_18K	DSP	FF	LUT
Module +	BRAM_18K +	DSP +	FF	LUT +
Module + masker	BRAM_18K + 0	DSP + 0	FF 0	LUT + 13104
Module + masker slimmer2	BRAM_18K + 0 0	DSP + 0 0	FF 0 0	LUT 13104 10400
Module + masker slimmer2 orderer7f	BRAM_18K + 0 0	DSP + 0 0 0	FF 0 0 1774	LUT 13104 10400 46784
Module + masker slimmer2 orderer7f !merger7f	BRAM_18K 0 0 0	DSP + 0 0 0	FF 0 0 1774 44576	LUT 13104 10400 46784 98207
Module + masker slimmer2 orderer7f !merger7f get_triplet_inputs	BRAM_18K 0 0 0 2	DSP + 0 0 0 0] 9	FF 0 0 1774 44576 508	LUT 13104 10400 46784 98207 2168
Module + masker slimmer2 orderer7f !merger7f get_triplet_inputs decision_function_1	BRAM_18K 0 0 0 2 0	DSP + 0 0 0 9 0	FF 0 1774 44576 508 19447	LUT 13104 10400 46784 98207 2168 56669
<pre> Module + masker slimmer2 orderer7f merger7f get_triplet_inputs decision_function_1 + Utilization (%)</pre>	BRAM_18K 0 0 0 2 0 ~0	DSP 0 0 0 0 9 0 +	FF 0 1774 44576 508 19447 4	LUT 13104 10400 46784 98207 2168 56669

- To find the final "pions-triplet" candidate one should build all possible combinations of 208 pions... extremely inefficient (even in standard c++ code)!
 - Tested different options:
 - Reducing number of inputs
 - Fixing highest p_m candidate as "pivot"
 - Using 2 pivots
 - Optimal solution found:
 - Fix two candidates and consider only the 8 highest p_r triplets
 - Completely avoiding any combinatorial!
 - \rightarrow Reached 88.5% gen-matching efficiency
 - Run ML inference only on the selected triplets to find the signal candidate

Firmware Overview: DNN for $W \rightarrow 3\pi$ identification

Different ML approaches being studied to identify the signal $W \rightarrow 3\pi$ candidate: DNN, BDT, multiclassification...

Example of a simple fully-connected DNN with:

- 5 layers with [35-20-20-25-35] neurons
- ReLu activation functions, sigmoid for output
- 23 input features
- Trained on $W \rightarrow 3\pi$ and MinBias events
- Model trained with TensorFlow/Keras

Firmware implementation:

C Pinansiato dell'Unione europea Ministero dell'Università e della Ricerca

 Quantization, pruning and synthesis performed with <u>hls4ml</u> library

Signal & Background Selection Efficiencies

Comparison of different approaches used to select the events and the $W \rightarrow 3\pi$ candidate

- <u>Cut-based</u>: tight cuts to select only 1 triplet in the event \rightarrow reject all others
- <u>ML-based</u>: run DNN/BDT inference on few (O(10)) triplet per event \rightarrow keep only if score > threshold

	W->3p	N evts	%	Ns	SingleNu	N evts	%	N _B	Ns/N _B
	File evts	50400	-	-	File evts	1941240	-	-	-
Analysis									
Cut-based		3852	0,076	626,7	-	1	5,2E-07	8,7E+07	7,24E-06
Pruned DNN	DNN > 0.987	5303	0,105	862,8	DNN > 0.987	1	5,2E-07	8,7E+07	9,97E-06
BDT	BDT > 0.964	7320	0,145	1191,0	BDT > 0.964	1	5,2E-07	8,7E+07	1,38E-05

Expected number of events obtained assuming 400 fb⁻¹ of data collected in ~1 year in Phase-2 by CMS

ML approach, if optimized, shows best performance in terms of expected S/B ratio by a factor 2!

• Crucial to correctly implement in firmware (quantization of weights, input variables, scores...)

Firmware Developments: Next Steps

CINFN MILANO BICOCCA

- Next steps in the firmware development:
 - Finish optimization of algorithms and kernels
 - Test final implementation (including P&R) on different boards
 - Currently collaborating with:
 - CERN CMS L1 group \rightarrow mainly for the "scouting" part
 - University of Colorado Boulder \rightarrow mainly for algorithms and optimization
 - They are developing a similar approach (for the L1T system) based on the CMS Phase-2 Track Trigger
- Firmware testing
 - Organize a test within the CMS Phase-2 Demonstrator system
 - Test on the MIB FPGA cluster using a "multi-board approach":
 - Generate a stream of $W \rightarrow 3\pi$ events on one board
 - MC code for generation already existing, to be adapted for our system
 - Transmit data to a different dedicated board
 - Decode and analyze events

• Talks on the Topic

• Within CMS

- "W→3pions studies" <u>L1 Scouting Weekly meeting</u> (Oct. 2023)
- "Phase 2 Scouting W3Pi performance" <u>Level-1 DPG meeting</u> (Jan. 2024)
- "Phase-II W->3Pi scouting analysis" <u>Level-1 DPG meeting</u> (Apr. 2024)
- Within Spoke-2
 - "The Milano-Bicocca FPGA Cluster" <u>Spoke-2 Annual meeting</u> (Dec. 2023)
- o <u>Other</u>
 - "Analysis of the $W \rightarrow 3\pi$ decay as a use case for scouting--analyses on FPGA" <u>SIF 2024</u> (Sept. 2024)

• Other Activities

- Development and improvements of one of the
 - " $c++ \rightarrow firmware$ " backends of the <u>Conifer</u> package
 - Included in the official release since version <u>v1.5</u>

د	Conifer version	ScorePrecision	vsynth LUT	vsynth FF	Latency			
	master	<pre>ap_fixed<11,4,AP_RND_CONV,AP_SAT></pre>	51936	5032	133			
скаде	This PR	<pre>ap_fixed<11,4,AP_RND_CONV,AP_SAT></pre>	51163	4489	9			
	master	ap_fixed<11,4,AP_RND_CONV>	43329	3542	4			
\ Conifer	This PR	<pre>ap_fixed<11,4,AP_RND_CONV></pre>	42988	3800	4			

Courses in cooperation with Working Package 5

One of the Working Package 5 milestones is the "Educational KPI":

> "Organizing courses about FPGA programming on low and high level"

Two courses organized so far:

- Introductory course to HLS FPGA programming (Agenda)
 - 27-30 November 2023
 - Introduction to high-level FPGA programming (HLS + Vivado) and ML on FPGA
 - Hands-on exercises on Virtual Machines provided by CNAF
- Introductory course to VHDL (Agenda)
 - o 4-6 March 2024
 - Introduction to low-level FPGA programming (VHDL)
 - Hands-on exercises on FPGA boards provided by INFN & University of Padova (A. Triossi)

Coming Next:

- New courses on high-level FPGA programming are being organized/planned
 - Dates not yet scheduled

Summary

- The Spoke-2 HPC FPGA Bubbles project provides an optimal system to test and develop new algorithms and technologies for the HL-LHC phase
 - The MIB Cluster will consist of 8 Xilinx and 8 Intel FPGA boards, also in "full-mesh" configuration
 - Will be available via INFN Cloud and "direct connection"
 - Involvement from different INFN sites and different LHC experiment
 - Quite large delays in orders and delivery
 - Hopefully we should receive the hardware before the end of this year
- The analysis of the W→3π decay represents a perfect use case for designing and studying how to better exploit HPC Clusters
 - A preliminary analysis has been designed to run fully on FPGA, optimizing selections for hardware limitations and exploiting ML approach to maximise sensitivity
 - More optimization of algorithms and firmware implementation is ongoing
 - Next step is to test in different conditions (CMS Demonstrator, MIB FPGA CLuster)

The FPGA Cluster in Milano-Bicocca

Server:

4 server 4U format, 4 slot pci (pci4 o pci5):

- 2 server with 4 board Xilinx U55C each Ο
- 2 server with 4 board Terasic DE10-Agilex Dev. Board each
- Storage:
 - Uno of the U55C server equipped with 10 TB in Raid5 (SSD NVMe)
 - Uno of the Terasic server equipped with 10 TB in Raid5 (SSD NVMe) 0
- Network:
 - Two 10 Gbps ethernet ports for each server
- Connections and "topology"
 - Board Xilinx \rightarrow 2 ports at 100G (QSFP28)
 - Board Terasic \rightarrow 2 ports at 200G (QSFP-DD) 0
- Network Hardware:
 - Breakout cables (MPO-LC)
 - LC-LC connectors 0
 - Patch panel for LC-LC connectors 0

Possibility to realize a "full mesh" network

21

For a total of 16 FPGAs

MIB FPGA Cluster Details

				1 10 10 10 10 10 10 10 10 10 10 10 10 10				
	Appalto specifico Terabit per MIB							
	MIR							
	oggetto	quantita' fondi	totale	note				
	L1FPGA S	2 terabit	62,038.00 €					
Lotto1	L1FPGA_X	8 terabit	31,992.00 €					
FPGA	L1QSFP28	16 terabit	3,296.00 €					
xilinx	L1CBLMPO12	16 terabit	1,472.00 €					
e cavi	L1LCLC	2 terabit	177.00 €	Basta un solo pannello, ne inseriamo uno in piu				
	L1ETHCBL2	4 terabit	28.00 €	per connettivita' eth dei server				
	L1FPGA_S	2 terabit	62,038.00 €					
Lotto1	L1FPGA_T	8 terabit	73,608.00 €					
FPGA	L1QSFPDD	16 terabit	25,872.00 €					
terasic	L1CBLMPO24	16 terabit	1,472.00 €					
e cavi	L1LCLC	2 terabit	177.00 €					
	L1ETHCBL2	4 terabit	28.00 €	per connettivita' eth dei server				
			262,198.00€	iva esclusa				
			319,881.56 €	iva inclusa				
			319,881.56 €	terabit iva inclusa				
			- €	dare iva inclusa				
			210 001 E6 6	Tetale acquisti su lette 1 iva inclusa				
			213,001.30€	Totale acquisti su lotto 2 iva inclusa				
				10 and 10 and 1				

P. Dini

Similar model has been "re-used" for the other Spoke-2 HPC FPGA Bubbles

The CMS Phase-2 L1 Trigger System

https://cds.cern.ch/record/2714892

2024-09-11 F. Brivio

Analysis of the $W \rightarrow 3\pi$ decay as a use case for scouting-analyses on FPGA

Evaluation of Expected Number of Events

To evaluate the number of expected signal ($W \rightarrow 3\pi$) and background ("MinBias") events we use:

- $\circ \text{ Signal } \rightarrow \text{ N}_{\text{Sign}} = \sigma_{\text{W prod}} \cdot \text{BR}_{\text{W} \rightarrow 3\pi} \cdot \text{IntLum} \cdot \boldsymbol{\epsilon}$
 - where:
 - $\sigma_{W \text{ prod}} = 2.05 \cdot 10^8 \text{ fb}$
 - BR_{W $\rightarrow 3\pi$} = 10⁻⁷
 - IntLum = 400 fb^{-1}
 - ϵ = signal selection efficiency
- $\circ \text{ Background } \rightarrow \text{ N}_{_{\text{Bkg}}} = \text{ R}_{_{\text{MB}}} \cdot \text{T} \cdot \text{F}$
 - where:
 - $R_{MB} = 31.5 \text{ MHz}$ (MinBias rate)
 - T = 400 fb-1 / 7.5x10³⁴ = $5.33x10^{6}$ sec

= 61 days (data-taking period)

• F = background selection efficiency

Triplet Efficiencies Comparison

	# Triplets	Numerator	Denominator	Ratio
Gen-match efficiency	1	6148	8910	0.690
of selecting # reco	2	6978	8910	0.783
triplets:	3	7255	8910	0.814
• 1st+2nd pivots	4	7381	8910	0.828
\rightarrow 8 triplets	5	7489	8910	0.841
 1st+3rd pivots 	6	7538	8910	0.846
\rightarrow 7 triplets	7	7575	8910	0.850
• Total:	8	7608	8910	0.854
10 candidates	9	7856	8910	0.882
	10	7912	8910	0.888
	11	7920	8910	0.889
	12	7931	8910	0.890
	13	7936	8910	0.891
	14	7940	8910	0.891
	15	7945	8910	0.892

# Triplets	Numerator	Denominator	Ratio
1	6148	8910	0.690
2	6978	8910	0.783
3	7255	8910	0.814
4	7381	8910	0.828
5	7489	8910	0.841
6	7737	8910	0.868
7	7793	8910	0.875
8	7857	8910	0.884

Optimal Triplets chosen

- 5 triplets from 1st+2nd pivots
- 2 triplets from 1st+3rd pivots
- 1 triplet from 2nd+3rd pivots

Firmware Synthesis: Timing Estimates

+ Timing:

Jan Sammar yı	*	Summary:	
---------------	---	----------	--

Clock	Target	Estimated	Uncertainty
++ ap_clk	5.00 ns	3.926 ns	1.35 ns

+ Latency:

* Summary:

+ 	Latency	(cycles) max	Latenc Latenc	cy (absolute max	+-) 	Inte min	rval max	Pipeline Type
+- +-	303	303	1.515	us 1.515	us	304	304	no

+ Detail:

* Instance:

+		-+	+					+		+	
l	1	1	Latency	(cycles)	Latency	y ((absolute)		Inte	erval	Pipeline
Instance	Module	I	min	max	min		max		min	max	Туре
+	-+	-+	+					+		+	+
masked_masker_fu_2305	masker		0	0	0 I	ns	0	ns	0	0	no
call_ret_slimmer2_fu_2517	slimmer2	1	0	0	ı 0	ns	0	ns	0	0	no
grp_orderer7f_fu_2939	orderer7f	1	119	119	0.595 u	us	0.595	us	119	119	no
grp_merger7f_fu_4243	merger7f	1	17	17	85.000 r	ns	85.000	ns	17	17	no
grp_get_triplet_inputs_fu_4377	get_triplet_inputs	1	17	17	85.000 r	ns	85.000	ns	17	17	no
grp_decision_function_1_fu_4422	<pre> decision_function_1</pre>	Ì	8	8	40.000 1	ns	40.000	ns	8	8	no
									1		

Firmware Synthesis: Resource Occupancy

с.	 -	-	
		1.1	
~	 		

 A second sec second second sec			100.000 (0. 00 (0. 00 (0. 00)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.						
Name	BRAM_18K	DSP	FF	LUT	URAM					
DSP			–		++ 					
Expression	-		0	605	-1					
FIFO	-		-	-	-1					
Instance	2	9	66305	227332	-					
Memory	ן שון שו	-	1/68	1898	0					
Register	- -	-	– 11041	9923 -	- -					
+ Total		9	 79114	239758	0					
+ Available SLR +	1344	2976	871680	 435840	+ 320					
 Utilization SLR (%)	~0	~0	9	55	0					
+ Available	2688	5952	1743360	871680	640					
+ Utilization (%)	~0	~0	4	27	0					
+ Detail: * Instance: + Insta	ance	+- 	Мос	dule	+ BRAI	+ M_18K	DSP		LUT	+ L
+ grp_decision_funct	1_fu_4	422 0	decision_function_1		+ 	++ 0 21	+ 0 0	+ 19447 508	56669 2168	
Imasked masker fu	1pucs_1u_43 2305	ייי Ir	masker	L_INPULS		2 0	91	0	13104	
larp merger7f fu 4243			merger7f		ł	01	01	44576	98207	
grp_orderer7f_fu_2939			lorderer7f			0	0	1774	46784	
call_ret_slimmer2	slimmer2			0	0	0	10400			
Total		 			+ 	+ 2	+ 9	66305	227332	
+		+-			+	+	+			

Analysis of the $W \rightarrow 3\pi$ decay as a use case for scouting-analyses on FPGA

0

Firmware Implementation: Latency Optimized

Preliminary example of latency-optimized firmware implementation

Latency-optimized Fastest possible processing, large usage of resources									
	Latency (cy min 104	/cles) max + 104	Late mi 0.52	ncy (abs n + 0 us (+ solute) max 				
	+ Module	++ BRAM18K	DSP	FF	+	URAM			
	+ masker slimmer	++ 0 0	 0 0	0 0	+	 0 1 0			
ſ	orderer	0	0	31616	157981	0			
l	merger	0	0	24715	167638	0			
	get_triplet_inputs	0	6	302	1514	0			
	decision_function_1	0	0	19067	56669	0			
	+ Total +	0	6	75700	407306	0			
	- Utilization (%)	0	~0	5	46	0			
		the second se	the second se	the second s	the second se	The subscription of the su			

- Extremely reduced latency:
 - Around 0.5 microseconds for the full chain
 - from receiving inputs
 - to running inference on the triplet candidates
- Firmware (pre-implementation step) takes up almost 50% of the resources of the full board (Alveo U50 board)
 - Sorting kernel is the most expensive:
 - Alone occupying ~37% of available LUTs
 - Based on bitonic sorting and merging

Preliminary example of resources-optimized firmware implementation

Resources-optimized Reduce resource consumption to the detriment of total latency										
	Latency (cy min	+ cles) max +	Laten min	+ cy (abs +	+ olute) max +					
	228	228 +	1.140	us 1 +	.140 us +					
	+ Module	 BRAM18K	DSP	FF	 LUT	URAM				
	' masker slimmer	0 0	0 01	0	13104 10400	0 0				
	orderer merger	0	0	1774 45234	46784	0				
	get_triplet_inputs decision_function_1	0	6 0	326 19067	1642 56669	0				
	+ Total	0	 6	66401	228265	0				
	Utilization (%)	0	~0	4	27	0				

- By removing some of the parallelization, one can reduce largely the resource consumption
 - *E.g.* by removing the #pragma inline directive from some of the recursive methods used in the sorting process
 - Forcing some kernels to run in sequence rather than in parallel
- Resource consumption greatly reduced
 - LUTs down from 46% to 27%
 - $\circ~$ For a price in overall latency: now around 1.1 μs
- → Note that this implementation is still preliminary and more optimization is certainly possible! (e.g. with proper function pipelining, etc...)