
Declarative paradigms for analysis description and implementation
-

Update

Alberto Annovi, Tommaso Boccali, Paolo Mastrandrea, Andrea Rizzi

(INFN e Università di Pisa)

ICSC-S2-WP2 Meeting
10/09/2024

https://agenda.infn.it/event/41385/


Analysis paradigm: declarative vs imperative

● These is a correlation between the paradigm used for the description of the analysis algorithm and the 

programming paradigm used for its implementation in a software program.

2ICSC-S2-WP2 Meeting 10/09/2024

● So far mainly imperative paradigms have been used for analysis description and implementation

○ More straightforward application for “simple” tasks and linear/serial tools

● What has changed in the last decade?

○ HW :      parallelism/multithreading

○ SW :      more expressive programming languages (Python, C++ 17/20/23)

○ Tasks :  increased complexity, increased data size (analyses, combinations)

(from Wikipedia)

https://en.wikipedia.org/wiki/Comparison_of_programming_paradigms


Why a declarative approach?

3ICSC-S2-WP2 Meeting 10/09/2024

● Benefits of a (more) declarative paradigm:

○ Deeper decoupling between algorithm and implementation

■ Faster analysis development

■ Wider portability of an analysis (different datasets/experiments)

■ Stronger preservation of the results

○ Better scaling of development and preservation for increasing complexity of the algorithms and size of the data

○ Simpler parallelization of the tasks

○ Better support for automatic (technical) optimisation

○ More flexibility: e.g. different backend processors

● The development of analysis frameworks based on (more) declarative paradigms is growing momentum in the 
last years across the whole HEP community (e.g. Analysis Description Languages for the LHC )  

● Risks assessment:

○ “It’s just another framework” : Too specific / not general enough

○ “It would be great if it worked” : Too general / not customizable enough

https://indico.cern.ch/event/769263/


Plan and activity

● Target : a framework/toolbox able to:
○ support a declarative approach for the analysis description

○ interact smoothly with the standard tools (e.g. ROOT) and data samples (e.g. nanoAOD, PHYSLITE)

● Plan :
○ Development of a toolbox able to support declarative approach in HEP analysis:

■ Re-implementation from NAIL 

■ Improved modularity and scalability

○ Extensions to:
■ multiple input data-forma

■ full analysis chain

○ Test and optimisation phases will benefit from cutting-edge HW resources and community feedback

● Activity :
○ Development ongoing in ICSC-S2-WP2 - beneficial interactions with other spokes/experiments

○ Documentation (starting)

○ Presentation/interaction: workshop + conferences + discussion starting with ATLAS and ROOT teams

4ICSC-S2-WP2 Meeting 10/09/2024



References & documentation (in progress)

●  NAIL

 
● ICSC-S2 Annual meeting 2023 (CINECA, Casalecchio di Reno, 18-20/12/2023) 

●  ACAT 2024 (11-15/03/2024, Stony Brook, USA, proceedings submitted for publication)

●  CHEP 2024 (Krakow, Poland, 19-25/10/2024)

5ICSC-S2-WP2 Meeting 10/09/2024

https://github.com/arizzi/nail
https://agenda.infn.it/event/38374/contributions/215727/attachments/114503/164341/Mastrandrea_ICSC-S2-Annual-meeting_20231220.pdf
https://indico.cern.ch/event/1330797/contributions/5796598/
https://indico.cern.ch/event/1338689/


Data-format interface

● In principle 3 equivalent - but in general distinct - data-formats are 

involved in an analysis definition:

a. data-format used inside the framework for variables manipulation

b. data-format used in the description of the algorithm by the user

c. data-format used in the encoding of the input data to be processed

● a and b can - in principle - be unified for most applications

● c  is experiment dependent : a translation is needed  a ↔ c  

6ICSC-S2-WP2 Meeting 10/09/2024

● Strategy:

○ Translation via a configurable dictionary tool (Python)

○ Encode all the data-format specific information (and configurations 

needed) in a dictionary (JSON file)



Toolbox development status

● Tools:

○ Graph handling

○ Sample Processing : event loop definition

■ handling of systematic uncertainties to be added

○ Interface Dictionary : translation interface + variable definitions

○ Back-end processors (for event loop):

■ Basic loop processor (C++ compiled)

■ RDF-based processor (C++ compiled)

■ Direct python processor

○ Processors for full analysis chain : in development 

● Supported interfaces:

○ nanoAOD (CMS)

○ PHYSLITE (ATLAS)

7
Example: (over-) simplified energy calibration scheme

ICSC-S2-WP2 Meeting 10/09/2024

✓

✓

✓

✓
✓

✓

✓



Configuration and extensions

● Stand-alone Python package

● Dependences/needs:

○ g++ for back-end C++ compilation

○ Environment with ROOT available

■ Used in most of the analysis

■ Math tools used frequently

■ “Magic” type identification - needed to build the back-end processor

○ Dictionary (used both in analysis description and back-end building stages)

● Analysis description in one JSON file :

○ contains both analysis description and actual dictionary 

8ICSC-S2-WP2 Meeting 10/09/2024



Features

● Hash code tagging:

○ Avoid repeating the steps already available

○ Feature implemented (but not tested yet)

○ Useful application to both event loops and full chain analyses

● Graph tool

○ DAG (Directed Acyclic Graph) custom implementation - used in both event loop and full-chain analysis

● Sample Processor (event loop)

○ Full set of declarations (under test - inherited from NAIL)

○ Interface dictionary used by the definitions (to be re-evaluated for the next iterations)

○ Event “Regions” defined according to selections

○ Systematic uncertainty handling (to be implemented)

● Back-end processor (event loop):

○ C++ code generated by the Sample Processor and compiled (g++)

○ Plain loop more readable than RDF - RDF ~30% faster processing

9ICSC-S2-WP2 Meeting 10/09/2024



Extension to full analysis chain

● Example of a full analysis chain (dummy-style calibration task):

○ Sample preparation

○ Event Loop (NAIL - fully re-implemented now)

○ Snapshot/data reduction

○ Combination / comparison of distributions

○ Statistical analysis / Extraction of results

○ Selective / incremental execution

● Status: development of a base structure, check for completeness

● Plan for demonstrator:

○ Single task prototype (e.g. Event Loop)

○ Incremental extension to other tasks

10
Example: (over-) simplified energy calibration scheme

ICSC-S2-WP2 Meeting 10/09/2024



Summary

● The application of (more) declarative paradigms in analysis description and implementation

○ Can boost analysis’ speed (development and execution), preservation and portability

○ Is growing interest through the whole HEP community

● Plan:

○ Build on modern and recent developments (e.g. CMS’ NAIL with nanoAOD data-format)

○ Extend the data-format interface to 

■ Development, integration and validation (e.g. ATLAS’ PHYSLITE)

○ Extend the framework to a full analysis chain

○ Test and optimisation phases will benefit from cutting-edge HW resources and community feedback

● Activity in full swing - looking forward to comments/ideas/feedbacks

11ICSC-S2-WP2 Meeting 10/09/2024



Backup



NAIL (Natural Analysis Implementation Language)

● “NAIL is an analysis language that should allow to define in an abstract way a data analysis of a typical HEP 

experiment such as CMS or ATLAS. NAIL assumes an input data model for the event to process (...) and allow to 

specify the event by event processing actions in a declarative form. Analysis variations for optimizations and 

systematics do not need to be explicitly coded but are automatically derived from the event processing 

computational graph. Currently ROOT's RDataFrame is used as backend for a concrete implementation of the 

event processing as it allows parallelization and lazy evaluation.” (from the README file of the NAIL package)

● Developed in the CMS collaboration, main developer Andrea Rizzi

● Based on CMS’ nanoAOD (columnar) data format, written in Python, heavy lift in C++ (RDataFrame)

13

https://github.com/arizzi/nail


AoS vs SoA

● From Wikipedia : “In computing, an array of structures (AoS), structure of arrays (SoA) … are 

contrasting ways to arrange a sequence of records in memory, with regard to interleaving, and are of 

interest in SIMD and SIMT programming.” 

                                  AoS                                                                                                         SoA

● CMS: SoA (e.g. nanoAOD)

● ATLAS: AoS interface with SoA memory storage (e.g. xAOD, PHYSLITE)

14



Where the increased speed comes from?

● RVec

○ “A "std::vector"-like collection of values implementing handy operation to analyse them.”

○ Documentation 

○ Optimised for speed

○ Its storage is contiguous in memory

○ Automatic internal loop

15

https://root.cern/doc/master/classROOT_1_1VecOps_1_1RVec.html


Where the increased speed comes from?

● RDataFrame

○ “ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree , CSV and 
other data formats, in C++ or Python.

In addition, multi-threading and other low-level optimisations allow users to exploit all the resources 
available on their machines completely transparently.”

○ Documentation 

○ Optimised for speed

○ Lazy evaluation and automatic internal loop

16

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

