

Finanziato dall'Unione europea **NextGenerationEU**

Ministero dell'Università e della Ricerca

ICSC Italian Research Center on High-Performance Computing. Big Data and Quantum Computing

Introducing myself

Curriculum Vitae

Personal information

Name / Surname	D'Onofrio Adelina
Personal Email	donofrioadele@gmail.com-adelina.d'onofri
ORCID	orcid.org/0000-0002-0343-6331
Nationality	Italian
Date of birth	5 June 1988
Gender	Female
Awards	
Dates	15/07/2020
Prize	Chung-Yao Chao Fellowship 2020, granted by the Center for I Physics and the Collaborative Innovation Center for Particles as Chinese Academy of Science (CAS)
Work experience	
Dates	01/07/2023 - today
Occupation or position held	Tecnologo III livello, contratto a Tempo Determinato
Name and address of the employer	Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli
Main Topic	PNRR - ICSC the National Research Centre for High Performa Data and Quantum Computing, funded by European Union Spoke 2: fundamental research and space economy
	opone in remainder and space economy

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

o@cern.ch

Excellence in Particle nd Interactions of the

ance Computing, Big - NextGenerationEU

Current activities focussed on ICSC-Spoke 2

WP2: Design and development of tools and algorithms for Experimental HEP **WP5:** Support for Data Management on the **Distributed CN infrastructure**

Target: benchmarking interactive analyses with the INFN high rate platform

Missione 4 • Istruzione e Ricerca

Outline

Motivations Test infrastructure Scalability results Miscellanea Conclusions

- Use case examples:
 - In a future collider context
 - ATLAS Experiment use cases

Motivations

- - Impact on several aspects, from software to the computing infrastructure

Higher rates of collision events

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Challenges of LHC, HL-LHC and Future Colliders push to re-think the HEP computing models

Higher demand for computing and storage resources

To better analyse this increasing amount of Big Data:

- Optimize the usage of CPU and storage;
- Promote the usage of better data formats;
- Develop new analysis paradigms!
- New software based on declarative programming and interactive workflows;
- **Distributed computing on** geographically separated resources

High throughput data analysis platform

facility (details in back-up) and then migrated to the high throuput platform

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- The feasibility studies shown in the following slides were initially tested on the INFN Napoli

Benchmark interactive analyses Use-cases

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Selection and histogramming interactively via RDataFrame on JupyterHub

Mimic systematic variations: e⁺e⁻ energy gaussian smearing

Preliminary results: local client

How to compare the performance?

Defined	d Metric
Overall execution time	Time elapsed from the start of the execution (execution triggered) to the end of execution

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Exploiting the local client approach, the execution time improves wrt the standard/serial approach if we iterate over a significative number of energy variations (> 10)

Preliminary results: distributed cluster

Kubernetes infrastructure: 5+1 virtual machines Kubernetes workers & 1 Kubernetes master) of

Moving to a distributed Dask model and scaling resources, the performance improves Advantage: use this use case as simple test for who wants to benefit from the WP5 infrastructure

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

s (5 n <i>Open-stack</i>		<pre> test_Zee3.ipynb validate_us + % Cod (6]: c_distributed (6]: Client Client-39cce58b-9827-11e Connection method: Clust Dashboard: http://adonofri Cluster Info</pre>	ser.ipynb × + e v ee-aec4-b6ee4d234e22 er object o-scheduler.user-adonofrio:8787/status	Cluster type: dask_kubernetes.KubeCluster	尊 Python 3 (ipyke ি 个 ↓ 古 두	ernel) ()	
			KubeCluster adonofrio Dashboard: http://a	adonofrio-scheduler.user-adonofrio:8787/statu	s Workers: 10		
l ch	Local client Dask	Distributed Dask	Total threads: 100 ▼ Scheduler In Scheduler-4 Comm: tcp	fo er Idba4323-1515-459e-b911-6ff0a78cd0a0 ://10.42.63.173:8786	Total memory: 200.00 GiB Workers: 10		
6	320 s	75 s	Dashboard Started: Ju ▼ Worker	: http://10.42.63.173:8787/status Ist now 'S orker: adonofrio-default-worker-058	Total threads: 100 Total memory: 200.00 GiB Gae2a52b		
S	618 s	138 s		orker: adonofrio-default-worker-106 orker: adonofrio-default-worker-1e2 orker: adonofrio-default-worker-222 orker: adonofrio-default-worker-265	0arb181 a6feb33 80e6511 02adaa7		

ATLAS use-case

Three different analysis in the **Run 2 paper**, already published, according to mass splitting between stop (\tilde{t}_1) and neutralino ($\tilde{\chi}^{0}_1$), allowing different decay modes:

- $\stackrel{\checkmark}{=} 2 \text{ body} \rightarrow \Delta m > m_t$
- \neq 3 body \rightarrow m_W + m_b < Δ m < m_t

 \neq 4 body, the one picked up $\rightarrow \Delta m < m_W + m_b$

- Common final state signature: 2 OS leptons (electrons/muons), jets and missing transverse energy
- Cut & Count based approach

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

SUperSYmmetry: Beyond Standard Model theory

Missione 4 • Istruzione e Ricerca

4-body search workflow

Skimming

- Provided by the Collaboration
- Offline reconstruction
- $\mathcal{O}(PB)$ for data and MC

Thinning

- Removal of collections
- Baseline objects and trigger
- Scale Factors retrieval
- $\mathcal{O}(TB)$ for data and MC

Sanity check

Weighted number of events in the Wt background sample, after the event selection cuts in signal regions A and B, nominal case

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

ATLAS slimming code already in RDataFrame, but entirely written and compiled in C++ -> NO dask distributed approach

Event Selection

- Event selection for fitting tools
- RDataFrame + Dask applied to Wt background sample
- ~ 1.8 GB copied to the INFN workspace
- Tested nominal case and playing with syst. variations
- Code ready to play with other backgrounds

Preliminary results

Define	d Metric
Overall execution time	Time elapsed from the start the execution (execution triggered) to the end of execution

Exploiting the distributed approach, the execution time improves wrt the standard/ serial approach if we iterate over a significative number of systematic variations (each step in the x-axis includes previous contributions)

Missione 4 • Istruzione e Ricerca

Scheduler and Working Nodes Reports

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Connecting to working nodes

- Out of 9 worker nodes, we get up to 4% CPU occupancy on each worker node
- Limited CPU consumption due to the easy cut&count operations

ATLAS use-case

- Anomaly Detection in fully hadronic events with message passing based Graph Neural Netwoks (GNNs)
- Final goal: LHC Run 3 fully hadronic search Completely model agnostic, 2 large-R jets per event
 - Signal region based on Anomaly Score cut
- Graphs representing the final states jets, with 2 pT leading jets per event, built from transformed constituents
- Analysis performed by the Napoli ATLAS group in collaboration with Rome "La Sapienza" ATLAS group
- My personal contributions:
 - Data pre-processing with parallel approach, crucial to reduce the computational time
 - Performance evaluated on IBISCO cluster: https://ibisco-ui.na.infn.it/

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Anomaly detection in di-boson searches with fully hadronic final state

Analysis workflow

Inputs:

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

\neq ATLAS Run 3 simulations for signal and background (already skimmed samples ~ hundreds of MB)

Missione 4 • Istruzione e Ricerca

Create Graph Dataset

- Initial issue: graph creation was time consuming and computationally expensive ~ 20 minutes for a 17k events dataset Task: parallelise the graph creation step to reduce the execution time
- Performed on CPUs (max 128 nodes available on IBISCO, both ibisco-gpu02 & ibisco-ui exploited)
 - pandas & RDataFrame used
 - from joblib import Parallel, delayed
 - results = Parallel(n_jobs=self.num_cores, backend="multiprocessing")
 - (delayed(self.createGraph)(chunk)for chunk in chunks)

Input: signal sample (~17k events)

# nodes	#chunks	execution time
60	10	5.8 minutes
60	100	2.5 minutes
60	1000	2 minutes
120	1000	1 minute

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

To do: test the parallel approach on kubecluster and compare performance of **IBISCO** vs virtual machines

Input: background sample (~434k events)

# nodes	#chunks	execution time
60	1000	40 minutes
120	1000	20 minutes

Isomorphism between Graphs

Analogous issue, task, and setup as in the previous slide Issue: initial execution time for isomorphism evaluation ~ 10 minutes for a input dataset with 500 entries

• A graph kernel is a symmetric, positive semidefinite function on the set of graphs G.

# nodes	#chunks	execution time
120	1000	1.12 minutes

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

• $k: \mathbf{G} \times \mathbf{G} \to R$ $\phi: \mathbf{G} \to H$ $k(G_i, G_j) = \langle \phi(G_i), \phi(G_j) \rangle_H$ \langle , \rangle_H is the inner product in the Hilbert space

Missione 4 • Istruzione e Ricerca

ATLAS use-case III

Effort just started

- My personal contribution: mainly coordinating the inclusion of the columnar analysis in the EGamma Calibration software
- Goal: evaluate computing performance on INFN clusters

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Columnar analysis implementation in CP tools

Example to implement and improve: Zee demonstrator

Miscellanea

International and Regional Conferences

- ECFA 2023 talk -> delivered, <u>link</u>
- ICHEP 2024 poster —> delivered, <u>link</u>
- CHEP 2024 —> abstract submitted, accepted as a talk <u>link</u>
- SIF 2024 —> abstract submitted, accepted as a talk <u>link</u>

Presentations in Spoke 2 and WP2/5 Meetings

- Spoke 2 annual meeting talk: *link*
- Talks at WP2: *link*, *link*,
- Talks at WP5: <u>link</u>, <u>link</u>

Missione 4 • Istruzione e Ricerca

INFN - ICSC schools and courses attended

- I attended two INFN trainings for newly hired personnel at Frascati INFN laboratories, focussed on the INFN organisation and computing infrastructure (May 2024).
- I attended the INFN Introductory course to HLS (High-Level Synthesis) FPGA programming, promoted in the framework of the ICSC project (Nov. 2023).
- I attended and I successfully completed the individual project of the school SOSC 2023 Fifth International School on Open Science Cloud, focussing on Computing Models for Scientific Experiments (Oct. 2023).
- I attended the INFN First course about the porting on GPUs of code and algorithms, promoted by the ICSC project (June 2023).

Public Engagement

- Ansa ICSC link
- Futuro Remoto @ città della scienza, HEPSCAPE room

Missione 4 • Istruzione e Ricerca

Conclusions & Next Steps

- Interactive analyses feasibility studies on the local testbed infrastructure & on INFN cloud succeeded
- Performance evaluated using Dask on the local cluster or distributed, wrt original implementation Very productive collaboration with other work packages
- Short term goals:
- Deploy of the code & relative instructions to allow other users to test quasi interactive high throughput data analysis platform
 - Benchmark studies with local performance evaluation
- Medium-long term goals:
- Automate the high throughput data analysis deployment exploiting the ICSC computing resources Evaluate scalability and simultaneous performance with increasing number of workers J

Thank you!

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

Back-up

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Playground infrastructure at Naples (INFN)

- Our group developed a local testbed infrastructure in INFN Naples (Italy)
- The local deployment is based on the *Open-Stack laaS* paradigm
- Starting from the already existing *I.Bi.S.CO* installation, several updates were performed
- The cluster is made up of 2 identical virtual machines, each equipped with 1CPU quadCore and 8GB RAM, currently expanded up to 12 cores and 64GB
- Rocky Linux 8.6 is the operating system
- 2 nodes are equipped with **Docker** (20.10) for containerisation and **Kubernetes** (1.26.3) for the orchestration
 - One node plays as controlplane. etcf & worker; the other node acts as a plain worker The cluster is equipped with JupyterHub & JupyterLAB where the user can play with Python,
- **ROOT & Dask** libraries

High throughput data analysis platform

- Goal: provide the users with an infrastructure that represents a tradeoff between deployment speedflexibility, resource efficiency and service performance
- Solution being tested: the use of container technology (via Docker 20.10) that runs the applications and the Kubernetes tool for orchestration

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

computational capacity of the cluster.

Efficient & user friendly infrastructure

2 nodes equipped with **Docker** (20.10) for containerisation and **Kubernetes** (1.26.3) for orchestration

\$_

Terminal

MinIO

An object storage instance where users can store data

The JupyterLAB environment allows users to exploit data science python libraries and to m over the cluster

	ORE ICENSE	Object Browser				scale their
User		Q Filter Buckets			💭 File Ed	it View Run Kernel Tabs S Zee3.invnb X 12 Launch
Dbject Browser	r	Name	Objects	Size		
留 Access Keys		acagnotta	0	0.0 B	0	RDataFrame_test
Documentation	١	adonofrio	10,000	190.9 MiB	IP	Notebook
Administrator		Fcirotto	0	0.0 B	=	
Buckets		🖶 fgravili	0	0.0 B	*	Python 3 (ipykernel)
C Monitoring	~					>_ Console
Subscription						
E License				_		Python 3 (ipykernel)
						\$_ Other

Gianluca's presentation <u>link</u>

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Jupyter

с Ца		_	_			-	-
S HE	ip ×	🍾 sf_97.pdf	F	×	≣ functions.h	×	+
							-
							_
t							
	-						
	1						
,							
t							
		M	2				
File	Mark	down File	Python File		Show		
				Con	textual Help		

Dask

A python library to scale python code from multi-core local machines to large distributed clusters in the cloud

- Jupyter interface includes:
 - Terminal
 - Notebook implementation
 - Completely exportable and replicable

Simple test

- Simulation exploited:
 - 5k events, scaled to 1M events replicating the available dataset

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Idea: mimic systematic variations, gaussian smearing the electrons energy to compute Mee resolution

Towards a Dask + HTCondor model

Exploiting the distributed approach, the execution time halves wrt the local approach
 Moving to a Dask+HTCondor model, we gain up to another factor 2
 Increasing the number of workers, the execution time further improves

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca