

Advanced Machine Learning. Flash Simulation and bleeding edge applications

FlashSim: June status report

with a focus on Lamarr and offloading

Lucio Anderlini

Istituto Nazionale di Fisica Nucleare, Sezione di Firenze

External Partner

Who we are

Staff members:

- Alessandro Bombini ^j, INFN
- Giuseppe Piparo¹, INFN
- Maurizio Martinelli ^a, Università Milano Bicocca
- Simone Capelli ^a, Università Milano Bicocca
- Federica Maria Simone ⁱ, Politecnico di Bari
- Nicola De Filippis ⁱ, Politecnico di Bari
- Vieri Candelise ^h, Università di Trieste
- Giuseppe Della Ricca ^h, Università di Trieste
- Valentina Zaccolo ^k, Università di Trieste
- Mattia Faggin ^k, Università di Trieste
- Lorenzo Rinaldi ^e, Università di Bologna
- Piergiulio Lenzi ^g, Università di Firenze
- Vitaliano Ciulli ^g, Università di Firenze
- Sharam Rahatlou^h, Università Roma 1
- Daniele del Re ^h, Università Roma 1
- Lorenzo Capriotti ^f, Università di Ferrara
- Francesco Conventi ^e, Università di Napoli
- Francesco Cirotto ^e, Università di Napoli

PhD students:

- Francesco Vaselli ^c, Scuola Normale Superiore di Pisa
- o Matteo Barbetti ^b, Università di Firenze
- Muhammad Numan Anwar ^j, Politecnico di Bari
- o Benedetta Camaiani ^g, Università di Firenze
- Alkis Papanastassiou ^g, Università di Firenze
- Antonio D'Avanzo ^e, Università di Napoli

External collaborators:

• Andrea Rizzi ^c, Università di Pisa

KPIs

крі ід	Description	Acceptance threshold	2024-02-13
KPI2.2.1.1	N _{MC} billion events obtained from ML-based simulation, as demonstrated by official links in experiments' simulation databases	N _{MC} >= 1	1 M events (completed: 0.1%)
KPI2.2.1.2	N _{EXP} experiments have tested a machine-learning based simulation	N _{EXP} >= 2	3 experiment (completed: 150%)
KPI2.2.1.3	Machine-learning use-cases tested in the context of the CN were presented at N _{CONF} international and national events	N _{CONF} >= 3	8 use-cases (since Sept. '23) (completed: 267%)
KPI2.2.1.4	N _{UC} different machine-learning use-cases were tested in the context of the CN and made available in git repositories		4 use-cases (completed: 80%)

List of conferences for KPI2.2.1.3

- L.A., Generative models at the LHC, ALPACA workshop 2023, Trento
- 2. B. Camaiani, Example of adaptation domain in High Energy Physics, XAI 2023, Milano
- 3. A. Papanastassiou, "Anomaly detection with autoencoders for data quality monitoring in HEP", XAI 2023, Milano
- 4. M. Mazurek (CERN), Lamarr: implementing the flash-simulation paradigm at LHCb, ACAT 2024
- 5. F. Simone, Anomaly detection for data quality monitoring of the CMS detector, AISSAI 2024
- 6. F. Corchia, Tecniche computazionali avanzate per la simulazione veloce del calorimetro dell'esperimento ATLAS, IFAE 2024
- 7. M. Barbetti, The flash-simulation of the LHCb experiment using the Lamarr framework, EuCAIFCon 2024
- 8. F. Vaselli, FlashSim: an end-to-end fast simulation prototype using Normalizing Flow, EuCAIFCon 2024

List of use-cases tested on the platform (%)

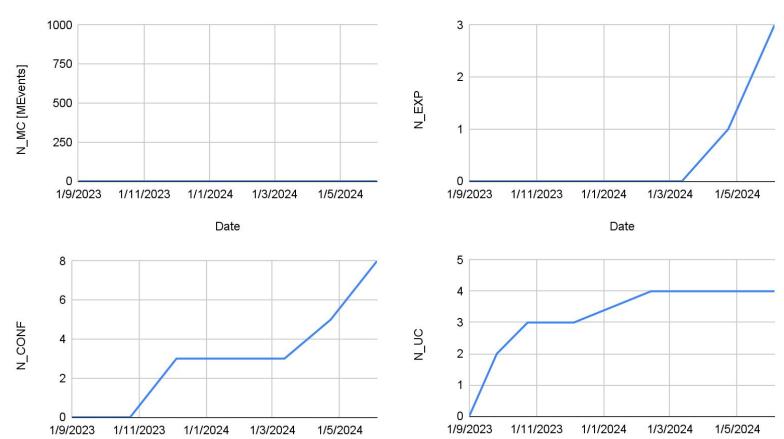
- Lamarr, the ultra-fast simulation option for the LHCb experiment (tracking parametrizations)
- Lamarr, the ultra-fast simulation option for the LHCb experiment (particle identification and neutral reconstruction parametrizations)
- Theory-independent classifiers for the data analysis with the CMS experiment
- Machine-learning-based simulation of the response of resistive solid-state detector to the charge generated by a traversing minimum-ionizing particle
- + Preliminary discussion with Muhammad Numan Anwar to bring HPO in the Cloud platform

Lucio Anderlini (INFN Firenze)

June 2024

Bi-weekly meeting of Spoke 2 - WP 2

Date



KPIs

Date

Lamarr validation workflow

Introduction

<u>Lamarr</u> is the *Flash Simulation* option for the LHCb experiment.

Its development involves a complex workflows for training and validation that challenges the Cloud infrastructure.

It was selected as case-study to *enable* machine learning studies with Cloud-based resources.

Features of the workflow:

- uses LHCb software via cymfs
- requires heterogeneous resources (GPUs)
- combine HTC steps (Pythia) with HPC steps (Tensorflow)
- combine steps with inconsistent software dependencies

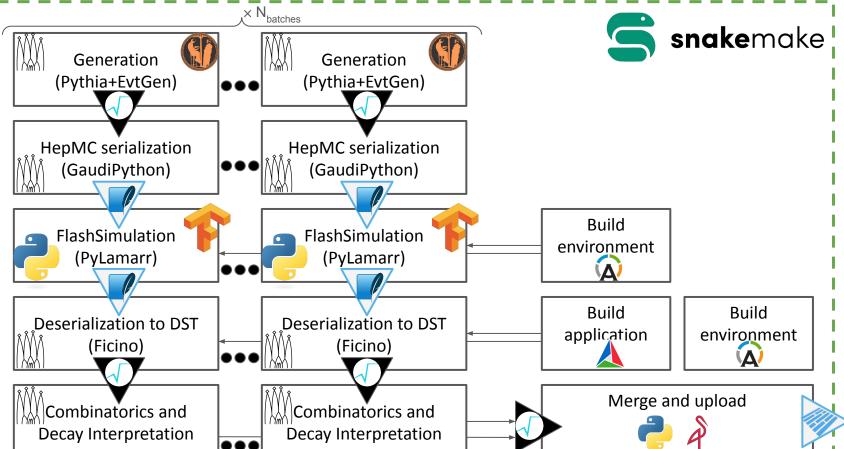
Snakemake as a workflow manager

While resource greedy, we intend FlashSim as managed by analysts rather than centrally. Let's call it a *quasi-interactive simulation*.

We selected Snakemake as a workflow manager:

- can run everywhere from a laptop to CINECA Leonardo
- supported by the reana initiative (<u>docs.reana.io/</u>)
- integrated with multiple cluster and *cloud resources* (through plugins)
- supporting both **standard and custom resources** (GPU, sites, ...)
- support both conda and **apptainer** for environment management
- can define complex **DAG workflow** with caching of intermediate results

Main challenge: works best with a distributed filesystem.



Lamarr Validation workflow

 $[\underline{github.com/LamarrSim/validation\text{-}workflow}\ (still\ private)]$

Lamarr Validation workflow configuration

The configuration of the workflow is described in YAML files defining:

- what to generate
 (for event_type see the <u>DECFILE package</u>)
- how to split events in batches
- how to simulate
- what to put in the nTuples

```
## EventType number as for LHCb DECFILES
event type: 12133264
## Definition of the run numbers to simulate
run numbers:
  first: 1
  last: 100
 list: []
 banned: []
## Number of events per simulation run
events per run: 1000
## Scratch directory
scratch dir: /home/jfs/private/scratch
## Local directory where this snakemake workflow repository was cloned
workflow dir: /home/jfs/shared/lamarr/anderlinil/validation/validation-workflow
## Local directory where the repository of Ficino was cloned
ficino dir: /home/jfs/shared/lamarr/anderlinil/Ficino
pylamarr dir: /home/jfs/shared/lamarr/anderlinil/PyLamarr
sqlamarr wheel dir: /home/jfs/shared/lamarr/anderlinil/SQLamarr/wheelhouse
## Bender
bender script: /home/jfs/shared/lamarr/anderlinil/validation/validation-workflow/workflow/scripts/bender.hcK.py
## PyLamarr models
pylamarr models:
 tracking: /home/jfs/shared/lamarr/models/lhcb.trk.2016MU.20230128.so
  pid: /home/jfs/shared/lamarr/models/PID_sim10-2016MU latest v1.so
```

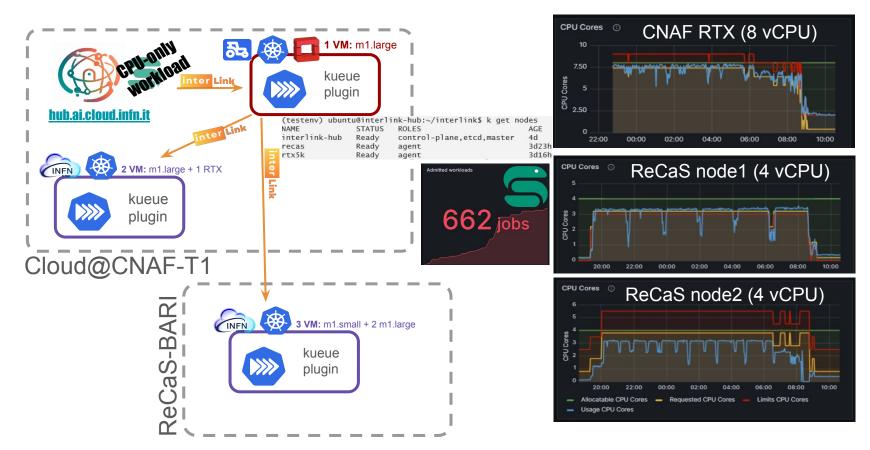

Executing the workflow in the cloud

We are interfacing Snakemake to the AI_INFN Platform (hub.ai.cloud.infn.it).

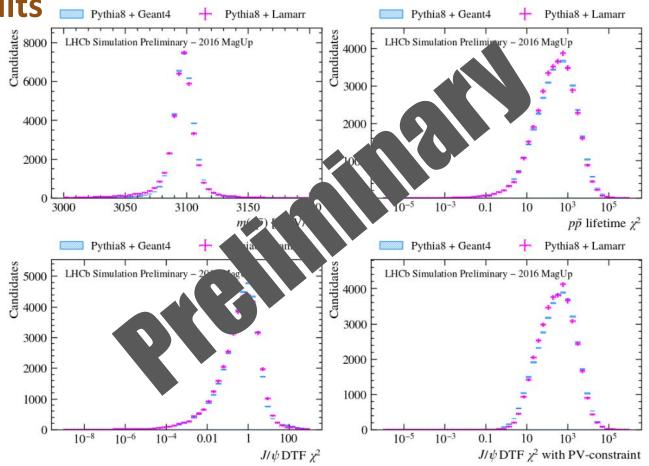
Snakemake steps can be executed:

- locally in the user's JupyterLab
- in the cluster, using resources destinated to interactive usage opportunistically
- in the Cloud, via interLink offloading

Filesystem distribution powered by



First attempt of running on multiple sites



Preliminary results

We are looking at a B decay to a final state including a $J/\psi \rightarrow p\bar{p}$.

Here are the very preliminary comparison plots.

Conclusion

- Deploying Lamarr on Cloud resources is a ice-breaker for several other
 machine-learning workflows combining CERN C++ software and machine learning;
- We have a first prototype of the whole workflow running through interLink on multi-cloud resources;
- Soon (this evening?) other Cloud providers will join, starting with CloudVeneto;
- At some point, interLink offloading towards **CINECA Leonardo** will be possible.

- Too many things are still ad-hoc for Lamarr, need work on generalization and documentation
- Upcoming feature: need work to support mixed workflows with the same step running both locally and in offloading

