

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

Benchmark interactive analyses ongoing at INFN Napoli Adelina D'Onofrio, Elvira Rossi, Francesco Cirotto, Francesco Conventi, Orso Iorio, Antimo Cagnotta, Antonio D'Avanzo, Gianluca Sabella, Bernardino Spisso, Francesco G. Gravili

ICSC Italian Research Center on High-Performance Computing. Big Data and Quantum Computing

Motivations Use cases tested:

Outline

- ATLAS: stop to 4-body SUSY analysis
 - collaboration with INFN Lecce
- CMS: top quark+MET analysis
 - collaboration with INFN Perugia

Motivations

- Most of the LHC searches/measurements rely on locally developed scripts that process the datasets, with parallel tasks and on an asynchronous batch system
- Challenges of HL-LHC and future colliders are pushing to re-think the HEP computing models
 - Impact on several aspects, from software to the computing infrastructure Ş
- From the software perspective, interactive/quasi interactive analysis is a promising paradigm
 - User-friendly environment
 - The implementation is simplified by adopting open-source industry standards: Dask, Jupyter ĕ Notebooks and HTCondor
 - Distributed infrastructure which leverages Dask
- Validating new frameworks (e.g. ROOT RDataFrame with multi-threading) Preliminary feasibility studies have been pursued exploiting INFN Napoli high rate platform

ATLAS use-case

- Three different analysis in the *Run 2 paper*, already published, according to mass splitting between stop (\tilde{t}_1) and neutralino ($\tilde{\chi}^{0}_1$), allowing different decay modes:
 - $\stackrel{\checkmark}{=} 2 \text{ body} \rightarrow \Delta m > m_t$
 - \neq 3 body \rightarrow m_W + m_b < Δ m < m_t

 \neq 4 body, the one picked up $\rightarrow \Delta m < m_W + m_b$

- Common final state signature: 2 OS leptons (electrons/muons), jets and missing transverse energy
- Cut & Count based approach

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

SUperSYmmetry: Beyond Standard Model theory

Missione 4 • Istruzione e Ricerca

/orking with INFN ecce

4-body search workflow

Skimming

- Provided by the Collaboration
- Offline reconstruction
- $\mathcal{O}(PB)$ for data and MC

Thinning

- Removal of collections
- Baseline objects and trigger
- Scale Factors retrieval
- $\mathcal{O}(TB)$ for data and MC

🜈 dask

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Infrastructure and kubecluster

- The local (INFN Naples) deployment is based on the Open-Stack laaS paradigm
- Starting from the already existing *I.Bi.S.CO* installation, several updates were performed
- The physical cluster is made up of 2 identical virtual machines, each equipped with 1CPU quadCore and 8GB RAM, currently expanded up to 12 cores and 64GB
- Rocky Linux 8.6 is the operating system
- 2 nodes are equipped with **Docker** (20.10) for containerisation and **Kubernetes** (1.26.3) for the orchestration
 - One node plays as controlplane, etcf & worker; the other node acts as a plain worker
- The cluster is equipped with **JupyterHub** & **JupyterLAB** where the user can play with **Python**, **ROOT & Dask** libraries

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Kubernetes infrastructure: 5+1 virtual machines
32 cores & 64 GiB in each compute
 If more users are connected, scheduling jobs pr
Clusters are dynamic objects
<pre>test_Zee3.ipynb • I validate_user.ipynb × +</pre>
$\blacksquare + \\ & \square \\ \blacksquare \\ \downarrow \\ \downarrow$
[b]: c_distributed [c]:
Client-39cce58b-9827-11ee-aec4-b6ee4d234e22
Connection method: Cluster object Cluster type: dask_kubernetes.KubeCluster
Dashboard: http://adonofrio-scheduler.user-adonofrio:8787/status
- Cluster Info
KubeCluster adonofrio
Dashboard: http://adonofrio-scheduler.user-adonofrio:8787/status Workers: 10
Total threads: 100 Total memory: 200.00 GiB
▼Scheduler Info
Scheduler Scheduler-4dba4323-1515-459e-b911-6ff0a78cd0a0
Comm: tcp://10.42.63.173:8786 Workers: 10
Dashboard: http://10.42.63.173:8787/status Total threads: 100
Started: Just now Total memory: 200.00 GiB
▼ Workers
► Worker: adonofrio-default-worker-058ae2a52b
► Worker: adonofrio-default-worker-1060afb181
► Worker: adonofrio-default-worker-1e2a6feb33
► Worker: adonofrio-default-worker-22280e6511
► Worker: adonofrio-default-worker-26502adaa7

Exploiting the distributed approach, the execution time improves wrt the standard/serial approach if we iterate 0 over a significative number of systematic variations (each step in the x-axis includes previous contributions)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scheduler and Working Nodes Reports

/home/jovyan/work/pnrr-atlas-analysis/dask-report.html

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Out of 9 worker nodes, we get up to 91% CPU occupancy on one node and up to 5% on the other nodes

[[almalinux@kuber-node-2 ~]\$ top

top - 10:47:40 up 17 days, 22:40, 1 user, load average: 0.47, 0.28, 0.20 Tasks: 504 total, 1 running, 503 sleeping, 0 stopped, 0 zombie %Cpu(s): 3.1 us, 0.4 sy, 0.0 ni, 96.2 id, 0.2 wa, 0.1 hi, 0.0 si, 0.0 st MiB Mem : 64298.3 total, 52125.8 free, 6999.9 used, 5863.5 buff/cache 0.0 used. 57298.4 avail Mem MiB Swap: 0.0 total, **0.0** free,

PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+	COMMAND
3467064	almalin+	20	0	1077988	627812	378248 S	91.4	1.0	0:05.15	python
3436893	almalin+	20	0	6841396	553904	170460 S	3.0	0.8	0:15.16	python
2163103	almalin+	20	0	544308	118628	29288 S	2.3	0.2	94:53.01	python3.10
1244708	almalin+	20	0	6485488	390772	27588 S	2.0	0.6	337:41.39	python
1574	root	20	0	4011788	148624	72036 S	1.7	0.2	755:31.40	kubelet
1342269	almalin+	20	0	544320	116988	29364 S	1.7	0.2	250:13.90	python3.10
1245200	almalin+	20	0	1165092	378416	19604 S	1.3	0.6	279:15.23	python
3462166	almalin+	20	0	2453528	1.9g	29908 S	1.3	3.1	0:13.91	python3.10
3467062	almalin+	20	0	438548	87068	27772 S	1.3	0.1	0:02.15	python
1245202	almalin+	20	0	1189084	437148	19584 S	1.0	0.7	260:06.77	python
3461916	almalin+	20	0	4722168	61600	19928 S	1.0	0.1	0:06.10	dask-worker
1173	root	20	0	3428412	75068	32896 S	0.7	0.1	63:20.86	containerd
2163062	almalin+	20	0	4797108	65568	19992 S	0.7	0.1	53:46.23	dask-worker
3467329	almalin+	20	0	16408	7092	5576 R	0.7	0.0	0:00.17	top
3947642	almalin+	20	0	811908	148688	18232 S	0.7	0.2	5:05.35	jupyterhub-sing
1294	root	20	0	4272748	138224	58384 S	0.3	0.2	286:48.93	dockerd

CMS use-case

- Early Run 3 analysis (2022-2023 data taking)
- Beyond Standard Model searches
- Vector-Like Quark T in $T \rightarrow tZ$ channel
- Final state: hadronic Top quark and Z (vv)
- Development of the already published full Run 2 analysis
 - <u>JHEP05(2022)093</u>, with the idea to extend the results interpretation
 - to more models predicting the same final state
 - Dark Matter production in association with a Top quark
 - Technicolor models <u>The Radiative Flavor Template at the LHC</u>

24/05 WP2.5 presentation *link*

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

9

dell'Università

State of the art Workflow in 2 steps:

- Obtained by Data preprocessing, evaluation through ML model. Using CMS NanoAOD tools (pyROOT-based) and CRAB.
- Skimming and selection using Interactive Analysis
 - Input: ntuple from the 1st step
 - Selection + variables calculation through RDataFrame
 - Distribution of the process using Dask
 - Output: TH1D easy to manage, also possible to store snapshot
 - using remote storages Working on Perugia's analysis facility
- Analysis still far from the end, more processes will have to be added that will slow it down Currently the results are very promising Time reduced from ~1d to ~3h and there is still room for development

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Conclusions & Next Steps

- Interactive analyses feasibility studies on the INFN Naples infrastructure succeeded
- Three use cases tested (ATLAS, CMS, <u>FCCee</u>), in different scenarios: different experiments and analyses
- Towards an INFN national cloud infrastructure with a datalake model to facilitate future analyses (hopefully starting from LHC Run 3)
- Thoughts about ATLAS use case:
- techniques
- Long term goals:
- The current analysis is a successful case of migration to a new more efficient paradigm
- \checkmark End-goal is to eventually test also the production steps, i.e. exploring the feasibility of a passage: WLCG \rightarrow **Interactive Analysis**
- Also in view of HL-LHC and potential future applications

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

I/O implementation to be improved, feasible approach: including grid certificate and voms in the jupyter image We currently exploit a cut & count analysis as use case: this is relatively easy from a computational point of view and to fully benefit from the distributed approach we could think about workflows including for example ML

11

Thank you!

Conferences and workshops contributions

- ECFA 2023 : talk about FCCee Zee benchmark use case —> done
- ICHEP2024: contribution accepted as poster (ATLAS SUSY analysis)
- CHEP2024 : contribution submitted via ATLAS computing speakers committee (ATLAS SUSY analysis)
- : contribution submitted (ATLAS SUSY analysis) SIF2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

13