FLASH TDR meeting: Physics reach

Luca Visinelli TDLI & Shanghai Jiao Tong University

FLASH TDR meeting May 15, 2024

The QCD sector of particle physics demands solving the "strong-CP puzzle"

The distribution of quarks in a neutron defines the neutron's **electric dipole moment**

Experimentally, this is remarkably small $|\theta| \leq 10^{-10}$

Idea: the quantity θ is not a parameter but a field α (the axion)

$$\mathcal{L}_{\text{QCD}} \supset \theta \,\tilde{G}G \longrightarrow \frac{u}{f_a}$$

Gluon field

New energy scale

QCD Axion: Theory motivations

[Peccei, Quinn, PRL **38** (1977) 1440] [Weinberg, PRL **40** (1978) 223] [Wilczek, PRL **40** (1978) 279]

 $\tilde{\tilde{T}}G$

Cold axions as dark matter

Cold axions as dark matter

Interactions are set by the **pseudo-scalar nature** of the axion, with Lagrangian:

$$\mathcal{L} \supset g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B} + g_{c}$$

Experimentally, how do they look like?

- Via $\mathbf{E} \cdot \mathbf{B}$ coupling (CP-odd) —
- Via coupling to e^- and n spins \longrightarrow Precessions

Coupling of the axion with the photon

$f_{af}(\nabla a) \cdot \mathbf{S} + g_{\text{EDM}} a \, \mathbf{S} \cdot \mathbf{E}$

Additional electric current

Coupling of the axion with the photon

Haloscope searches

The axion-photon coupling $g_{a\gamma} a \mathbf{E} \cdot \mathbf{B}$ modifies Maxwell's equations

Cavity resonating at frequency ν_c Significant enhancement when $2\pi\nu_c \approx m_a$ $m_a \sim \mu eV \longrightarrow \nu_c \sim GHz$ $P_{\rm sig} = \left(g_{a\gamma}^2 \frac{\rho_{\rm DM}}{m_a}\right) \times \left(QB_0^2 V\right)$

> Particle/astro Instrument

Forecast reach of FLASH: axion

The magnet was successfully tested in January 2024

Forecast reach of FLASH: vector DM

Inverse Gertsenshtein effect (Domcke&Garcia-Cely '21)

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad h_0 \sim |h_{\mu\nu}|$

High-frequency gravitational waves

Alesini+ (FLASH) 2309.00351

High-frequency gravitational waves

Vs.

13

LVK $f \sim (10-1000)$ Hz: Solar-mass BHs

Cavities resonate at much higher frequencies than those in LIGO/VIRGO/KAGRA

Cavity $f \sim (0.1-10) \, \text{GHz}$: Primordial BHs

Conclusions and future directions

Group goals:

- Motivate students into astroparticles: we need ideas!
- Synergy between theory, experiments, computer skills
- Boost networking between communities (e.g. I belong to COST actions and organize workshops)

Individual goals (besides getting grants and publish):

- Keep up with the theory motivations besides larger experiments
- Come up with new frameworks that challenge experimentalists
- Aspire to enter large collaborations (Xenon, LZ, IAXO) to further these theory lines

Conclusions and further read

Ideas can be found in the FLASH CDR: 2309.00351

Physics of the Dark Universe 42 (2023) 101370

Full Length Article

The future search for low-frequency axions and new physics with the FLASH resonant cavity experiment at Frascati National Laboratories

David Alesini^a, Danilo Babusci^a, Paolo Beltrame^b, Fabio Bossi^a, Paolo Ciambrone^a, Alessandro D'Elia^{a,*}, Daniele Di Gioacchino^a, Giampiero Di Pirro^a, Babette Döbrich^c, Paolo Falferi^d, Claudio Gatti^a, Maurizio Giannotti^{e,f}, Paola Gianotti^a, Gianluca Lamanna^g, Carlo Ligi^a, Giovanni Maccarrone^a, Giovanni Mazzitelli^a, Alessandro Mirizzi^{h,i}, Michael Mueck^j, Enrico Nardi^{a,k}, Federico Nguyen¹, Alessio Rettaroli^a, Javad Rezvani^{m,a}, Francesco Enrico Teofiloⁿ, Simone Tocci^a, Sandro Tomassini^a, Luca Visinelli^{o,p}, Michael Zantedeschi^{0,p}

Thanks to all my collaborators and to the audience!

Luca Visinelli

Contents lists available at ScienceDirect

Physics of the Dark Universe

journal homepage: www.elsevier.com/locate/dark

Check for updates

The QCD sector of particle physics demands solving the "strong-CP puzzle"

of a global U(1) symmetry [Weinberg, PRL 40 (1978) 223; Wilczek, PRL 40 (1978) 279]

QCD Axion: Theory motivations

- Its most plausible solution predicts a new particle, the QCD axion [Peccei, Quinn, PRL 38 (1977) 1440]
- The QCD axion is a pseudo-scalar boson resulting from the spontaneous symmetry breaking

