Design of Cavities from UPCT and IFIC-CSIC-UV Groups

Alejandro Díaz, Benito Gimeno, Juan Monzó Technical University of Cartagena IFIC – CSIC – Universitat de València

Project PID2019-108122GB-C33 funded by:

AGENCIA ESTATAL DE INVESTIGACIÓN

FLASH TDR Meeting

May 15th, 2024

OUTLINE

- Cavities in CADEx (80 110 GHz)
 - Large (tall and long) cavities
 - Tuning
 - Coupling
- Cavities in HF RADES (8 10 GHz)
 - Multicavities
 - Superconductors
 - Tuning
- Cavities in LF RADES (250 450 MHz)
 - Experiment concept
 - Scaled-down cavity
 - Measurements at KIT
- Cavities for GWs

CADEx

HF – RADES: MULTI-CAVITIES (I)

HF – RADES: MULTI-CAVITIES (II)

HF – RADES: SUPERCONDUCTORS AND TUNING

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 4, JUNE 2022

Mechanical tuning

Non-mechanical (EM) tuning:

Ferroelectrics (KTaO₃)

metallic

plates

x Z

PMC

PEC

PEC

arXiv:2312.13109v1 [physics.ins-det] 20 Dec 2023

BABYIAXO – RADES. CONCEPT

BABYIAXO – RADES. CONCEPT & PROSPECTS

BABYIAXO – RADES. SCALED-DOWN CAVITY

Scaled-down version (x10 times)

Tuning range: 2.5 – 3 GHz

Body: stainless steel. Cover: copper plating.

BABYIAXO – RADES. MEASUREMENTS AT KIT (I)

BABYIAXO – RADES. MEASUREMENTS AT KIT (II)

BABYIAXO – RADES. MEASUREMENTS AT KIT (IV)

Simulated $Q_0 \simeq 5 \cdot 10^4$ (T ≈ 3 K)

We reach $\beta > 2$ in the whole range (needed $\beta = 2$)

Change TE_{111} coupling by rotating the coupling loop

BABYIAXO – RADES. MEASUREMENTS AT KIT (VI)

Frequency stability $\approx 40\%$ of the bandwidth

- 1. Automatic recoupling algorithm
- 2. Using the 2.5 3 GHz BabyIAXO cavity for dark photon search?
- 3. Manufacturing of 1 m long cavity (250 300 MHz)

Deciding material and thickness: only copper?, thermal conductivity, quench forces?

Different fabrication technique?

- 4. Characterizing at T=3 K
- 5. Manufacturing of 5 m long cavity (250 300 MHz)
- 6. Characterizing at T=3 K

CAVITIES FOR GRAVITATIONAL WAVES (I)

In collaboration with **Diego Blas**, Institut de Física d'Altes Energies (IFAE), Institució Catalana de Recerca i Estudis Avançats (ICREA)

- **Cubic resonator** with three degenerated modes that can be **independently** and **simultaneously** detected with three coaxial antennas placed in orthogonal directions.
- The homogeneous magnetostatic field *B* is oriented in the *Z* axis.
- Electric (up) and magnetic (down) field distributions of the three degenerate modes.

CAVITIES FOR GRAVITATIONAL WAVES (II)

• Application of the BI-RME 3D technique for the efficient and accurate electromagnetic analysis of the cavity excited by the GWs.

Two-level participation:

- Development of cavities for axion (& GW) detection
- Observers from RADES in FLASH (as commented at RADES steering committee)

FLASH is invited as observer to RADES meetings

Although different magnet type, both experiments can beneficiate each other.

Design of Cavities from UPCT and IFIC-CSIC-UV Groups

Thank you!

AGENCIA ESTATAL DE INVESTIGACIÓN

FLASH TDR Meeting

May 15th, 2024