Signal detection and amplification in FLASH: MSSQUID Test and Optimization

MetaMat-SuperNano Group University of Camerino

S. J. Rezvani

Washer type SQUID Fabrication optimization and intrinsic noise reduction

Feedback coil

Input coil Washer Josephson junctions Parasitic capacitance Secondary induction loop Microstrip Feed back coil Max gain for inductive performance H Shielding Secondary stage amplification (HFET, BAW)

Actuator-SQUID for Lunar gravitational Wave detector:

Fabrication at Lund and INRiM : The quality check under progress

SQUID Coils parameters effect the performance :

Input coil thickness optimization TC and Jc and Hc

Temperature dependence of the resistivity for selected Nb flms, with a thickness ranging from 9nm to 80nm. Inset: width of the plateau region (Δ T), above TC, as a function of d (circles).

Input coil width optimization Jc

Tickness dependence of the critical current density extrapolated at 0K. Circles: flms w = 10µm wide; yellow flled symbols correspond to the flms deposited on sapphire substrates. Squares: w = 50µm wide

Intrinsic structural properties (performance and structural Noise):

I-V characteristics for the NbN stripes, carried out at several *T*. Both up- and down-current sweeps evidence the presence of slanted steps due to the occurrence of intermediate resistive regimes before the complete transition to the normal state. Inset: magnification of the central part of the plot.

Quantum phase slip due to Granular Structure

- T Range 3.8 K to 800 K
- DC and AC measurments
- Impedance measurments
- Capacitanca measurements
- Magnetif field upto 1T
- Magnetic field resolution of $10\mu T$
- Low T guassmetry

- T Range 1.5 K to 300 K
- DC and AC measurments
- Impedance measurments
- Capacitanca measurements
- Magnetif field upto 12T
- Possibility to upgrade:
- To 300 mK T range
- sample rotation

Key

- 1. VSM Vibrator
- 2. Vibration Compensation Unit
- 3. Vertical Translation
- 4. Perspex Airlock
- 5. Pulse Tube Cryocooler
- 6. High Homogenity Magnet

Intrisic test performed:

1- The inrtrinsic properties of the junctions and the MSSQUID to optimiz the geometry design and fabrication process

2- The full functionality test below Tc and at variable T and H

3- Bias and flux current test and optimization

The noise temperature n of an MSA scales linearly with the operation frequency and temperature:

- 1- Static (DC) noise test
- 2- AC noise test at low and high frequency (< 1GHz)
- 3- wide band noise measurment
- 3- input gain test for inductive regime performance
- 4- Possible HFET post amplification developement and noise test (at 4 K) :MBE available at UNICAM
- 5- Microstrip resonance test

Sheilding TESTs:

External magnetic fields will also change the flux bias of the SQUID, the gain might drift or be modulated with changing external fields

- 1- Packaging in a stainless-steel tube and using superconducting magnetic shield.
- 2- Lead-foil cylinder with an outer layer of (ferromagnetic) Conetic AA foil.
- 3- Mu metal with the design rings for the compensation of the magnetic field
- 4- Resilient test under high magnetic field (100 μ T to 10 T)

Thanks