Resistivity measurement 2022 and 2023 TB SHiP/LHCb

Giuliana Galati on behalf of the SHiP/LHCb Bari Group

29/04/2024

Introduction

Details about SHiP/LHCb chamber:

-Area: 70x100 cm² -1.6 mm thick bakelite electrodes - Resistivity $\sim 10^{11}\Omega/cm^2$ -1.6 mm single gas gap -2D readout, 32 strips per plane -Strip pitch \sim 1 cm -TDC readout

T3 trolley (3m from the source)

Gas Mixtures:

Std: 95.2% R134a-4.5% iC_4H_{10} -0.3%SF₆ eco2: 35% HFO-60% CO₂-4 % iC_4H_{10} -1% SF₆ eco3: 25% HFO- 69% CO₂- 5% iC_4H_{10} - 1% SF₆

$$\mathcal{E}(HV_{ ext{eff}}) = rac{\mathcal{E}_{ ext{max}}}{1 + e^{-eta(HV_{ ext{eff}} - HV_{50})}}$$

where ϵ_{max} is the asymptotic value of the logistic function fitted; β describes the steepness of the curve; HV_{50} sets the voltage at which the chamber efficiency reaches 50%.

WP is defined as the HV_{eff} value at which the 2D efficiency reaches 95% of the asymptotic value approached by the logistic function

Integrated charge at TB 7/2023: 110 mC/cm²

ABS used in this analysis:

OFF	Used for 2023 plots and 2023-2022 comparison
100	available
69	
22	
10	
6.9	
4.6	
3.3	
2.2	
1	

Summary formulas

$$R = \frac{\rho \cdot 2 \cdot s}{A}$$

- R = Resistance
- ρ = resistivity
- s = thickness = 0.16 cm
- A = area = 7000 cm^2

$$HV_{gas} = HV_{eff} - R \cdot I$$

Resistivity measured in Argon (see Luca's talk on 22/02/2024)

SHiP

~ 185 mC/cm²

What's new

- Bug correction in the evaluation of out of spill current (some fit at HV50 were not good) —> small differences anyway
- Improvement of fits for particular cases at HV50 [e.g. half gaussian fit] —> small differences anyway

 Investigating Davide's Suggestion: use current IN spill to see if values are in better agreement with Argon measurements

SHiP Resistivity (HV50) with current out of spill

rho (1	0^11 Ohr	n/cm)			Argo (10^11 C [*	n rho)hm/cm) *]	Ra
co2	eco3	Mean	Error		Mean	Error	
).38	0.36	0.36	0.02		1.87	0.03	0.
).50	0.49	0.50	0.01	13.7%	1.93	0.03	0.

	rho (10^11 Ohm/cm)						Argo (10^11 C [*	n rho)hm/cm) *]	Ra
	std mix	eco2	eco3	Mean	Error		Mean	Error	
07/2022	0.35	0.38	0.36	0.36	0.02		1.87	0.03	0.
07/2023	0.51	0.50	0.49	0.50	0.01	13.7%	1.93	0.03	0.

Procedure:

- I evaluate the variance of HV_{gas} at HV50 (parameter taken from the logistic fit) for
- range of the three results

[*] Results for Argon measurements are taken by eye from the plot

selected ABS (1, 2.2, 3.3, 6.9, 22, OFF) changing ρ with steps of 0.01*10^11 Ohm/cm • I take the lowest variance for each gas mix and I do the mean. The error is the half-

$2022 \text{ TB} - \text{rho} = 0.36*10^{11} \text{ Ohm/cm}$

$2023 \text{ TB} - \text{rho} = 0.50*10^{11} \text{ Ohm/cm}$

Current out of spill measurement

- Gaussian fit around the higher peak to get out of spill current
- Mean of values > 3 sigma (or 1 sigma)

• Problem 1: in cases like this one the peak at 0.4 uA has large impact on the mean value, which is ~ 0.8 uA, while looking by eye the in spill current is ~ 1.3 uA

Current out of spill measurement

- Gaussian fit around the higher peak to get out of spill current
- Mean of values > 3 sigma (or 1 sigma)

• Problem 2: In this example current in spill is 21.5 uA?

Difference between current in spill and out of spill

Difference between current in spill and out of spill (zoom)

out of spill > 3 sigma

SHiP Resistivity (HV50) with current in spill (3sigma)

	rho (10^11 Ohm/cm)						Argo (10^11 C [[*]	n rho)hm/cm) *]	Ra
	std mix	eco2	eco3	Mean	Error		Mean	Error	
07/2022	0.35	0.38	0.36	0.36	0.02		1.87	0.03	0.
07/2023	0.51	0.50	0.49	0.50	0.01	13.67%	1.93	0.03	0.

Procedure:

- I evaluate the variance of HV_{gas} at HV50 (parameter taken from the logistic fit) for
- range of the three results

[*] Results for Argon measurements are taken by eye from the plot

selected ABS (1, 2.2, 3.3, 6.9, 22, OFF) changing ρ with steps of 0.01*10^11 Ohm/cm • I take the lowest variance for each gas mix and I do the mean. The error is the half-

Difference between current in spill and out of spill

Difference between current in spill and out of spill (zoom)

SHiP Resistivity (HV50) with current in spill (1sigma)

	rho (10^11 Ohm/cm)						Argo (10^11 ([[;]	n rho)hm/cm) *]	Ra
	std mix	eco2	eco3	Mean	Error		Mean	Error	
07/2022	0.35	0.38	0.36	0.36	0.02		1.87	0.03	0.
07/2023	0.51	0.50	0.48	0.50	0.02	13.33%	1.93	0.03	0

Procedure:

- I evaluate the variance of HV_{gas} at HV50 (parameter taken from the logistic fit) for
- range of the three results

[*] Results for Argon measurements are taken by eye from the plot

selected ABS (1, 2.2, 3.3, 6.9, 22, OFF) changing ρ with steps of 0.01*10^11 Ohm/cm • I take the lowest variance for each gas mix and I do the mean. The error is the half-

Conclusions

- the error
- No significant differences in using current IN or OUT of spill for resistivity measurements

• After bug corrections, resistivity value is consistent with previous one within