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Summary

* Brief background
* Birefringence noise from high finesse mirrors
* Birefringence measurements in transmission

 Birefringence measurements in reflection
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La Fisica: birifrangenza ed ellitticita

« Inun mezzo birifrangente n;z n,

« Attraversando un mezzo birifrangente un fascio linearmente polarizzato
acquisisce unellitticita w = + a/b (il segno distingue i due versi di rotazione di E,)

1 2m(ny —ny )L
E’Y:E’Y<0) A¢: (”)\ )
1—|—7§%608219
E, =E, , Ap <1
i 22 sin 20
A — L
¢=i%%7¢sin29:ﬂ(n” )\nL) sin 29

An~10"", L~ 10 cm, N ~ 10, A = 1064 nm — A¢ ~ 0.6 rad ~ 34
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PVLAS general scheme

. . e : A4 ellipticity
polariser mirror magnetic field mirror |:| modulator analyser
—
K v in P p >$
B 0 p, + PDE
Y =Ny at2v I T at Vi, I
out I PDT

F. Della Valle et al. Eur. Phys. J. C(2016) 76:24
A. Ejlli et al. Physics Reports 871 (2020) 1-74

L is the length of the birefringent medium (in PVLAS experiment Ang o B?) @B =2.5T
TAngL An=25x102
— sin 29(t) = 1 sin 209(t)

The Fabry-Perot cavity amplifies ¢ by a factor N = 2F /. We had F = 7 x 10°.

Single pass ellipticity: 1) =

The ellipticity modulator allows heterodyne detection which linearizes the ellipticity 1) to be
measured and allows the distinction between a rotation and an ellipticity. The insertion of the A\ /4
wave plate allows measuring rotations.

The rotating magnetic field modulates the desired signal due to VMB.

= Lo ~ o {n°(t) + + 20T (L) + ...}
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State of the art

General scheme: modulated or pulsed field
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Physics Reports 871 (2020) 1-74

e The PVLAS - FE result remains the most

sensitive measurement yet performed:
An/B? = (1.9£2.7)x10 2 T2 with 2.5T

* Permanent magnets allowed careful
debugging of systematics: BL = 10 T?m

* Optical path difference sensitivity:
Sopp = 4x10 m/VHz @ = 16 Hz

* Cavity amplification was N = 4.5x10°

* Intrinsic noise from the mirrors limited
the sensitivity and the SNR

* Measured noise: x50 shot-noise @ 16 Hz
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Intrinsic mirror birefringence noise

Limits in the sensitivity of a polarimeter

iasre | @ overimenaiopticalpanarerence 1 @ NO experimental effort has reached shot-

sensitivities = ellipticity normalised for the ||

10"° w frequency ber of N and lenath A . e . .
number of passes N and wavelength . § - ngjse sensitivity (green) with a high
16 A 4 Shot-noise sensitivity limit

finesse F.P.

PVLAS-LNL

1 * There seems to be a common problem
1 afflicting all experiments

PVLAS-FE

PVLAS-TEST

* This noise seems to be an intrinsic

Sensitivity in optical path difference Sp, [m/+/Hz]
=

19 OVAL i
property of the cavity mirrors
10°° 3
V. 3 . . .
T T 1« With a low finesse cavity one does reach
10'21 Experiment cavity amplification N wavelength length 3 . . oy
BFRT (1993): multipass  35-578, 514nm  149m : shot-noise. The limit is not the method.
2 PVLAS-LNL (2008): F.P. 23'000, 45'000 532nm, 1064 nm 6.4 m 1
10 PVLAS-TEST (2013): F.P. 150'000 1064 nm 1.4m 3
PVLAS-FE (2016): F.P. 450'000 1064 nm 3.3m E
23 BMV (2014): F.P. 280'000 1064 nm 2.3 m 7
10 OVAL (2017): F.P. 320'000 1064 nm 1.4 m E
0.001 0.01 0.1 1 10 100 1000

Signal frequency [Hz]
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Intrinsic mirror oirefringence noise

Optical path difference AD fort=1s

10" +‘3.‘322in6%’8"8/'§86€”°3 measuredni= e * Typical PVLAS-FE optical path difference noise
— Fit= [L2+H2]12
16 L = A v ) T * Finesse = 6.88 x 10°
10 - HW) =B,y v
15,0404 Hy * Peaks at 8 Hz and 10 Hz represent Cotton-
10" p 01:0.02)10"" m , Mouton calibration signals from 850 pbar Argon
By = (4.63£0.02)-10"° mHz " 1l
— — Wavel 'Hl ,hl gas.
‘-—‘--."'--v.._ .
107 | HL& ! * The peak at 19 Hz is generated by a Faraday
""" e — rotation leakage due to the total cavity static
ST T ey . . .
T > . birefringence from the mirrors.
* Brownian? Why the cut-off?
-20
10 shot- 8 mW, 0.7 = = 765 . .
notno 2  Thermo-elastic model points to tantala.
5 6 7 89 2 3 4 5 6 7 8 910 2 3 5 6 7 8
. * For ET we can measure new coatings. Finesse
requency v [Hz] —
must be F > 5e4 (R > 99.995%): the amplified
/ mirror noise must be greater than shot-noise.
AthV_1/2

Sopp (V) =

V1+

2 ° i : . .
; + (Bthl/_l/4) Will be testing crystaline GaAs/AlGaAs mirrors.
I/ l/()

A = (201 £0.02) x 107® m, vy = (15.0+£0.4) Hz, By, = (4.63+0.02) x 10~ m/Hz"/*
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1s

Optical path difference AD for t

10

15

—8— Optical path difference measured int=1s

Intrinsic mirror birefringence noise

Finesse = 688000

Estimated the thermoelastic birefringence noise in

2 212

— Fit=[L"+H7]
21-1/2

e L) = AV 1]
4

reflection

-1/
== H(V) =B,V

* C.o = stress optic coefficient

vo = 15.0£0.4 Hz

Ap = (2.01£0.02)-10 " m

Y = Young’s modulus

By, = (4.63£0.02)-10 " mHz "

= wavel

o = thermal expansion coefficient

— 11
o [l ' . .
i | * ro = beam radius on mirror
""" T e, * C; = specific heat capacity
: * p =density
T e * A; = themal conductivity
5 6 789 é '3 "1 5 6 789 2 3 4 5 6 78

1 10

Frequency v [HZ]

Temperature spectral density

Sp(v) = S8kpT*?
S mraN/TpCr ATy

Fused silica

S(AFS) ~4x107* m/VvHz @ 1 Hz

—1/4
XV Tantala

Optical path difference spectrum

SAD = 2de ﬂCsoYOéTST (l/)

S L (1+5)x107 m/vHz @ 1Hz
Compatible with By, = (4.63 + 0.02) x 107 m/Hz"/*
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Substrate birefringence measurements

7 | An dL
*  Single pass ellipticity: ¥ (t) = / sin 219 (t) = g sin 29(¢).
* Here 9(t) is the angle between the polarisation and the birefringence axis. ¢(t) is the HWP angle: 9(t) = 2¢(t)

ellipticity
modulator

mirror

polariser mirror

\V(t) at 4VW _D'_ PDT

G. Zavattini et al. Eur. Phys. J. C (2016) 76:294
G. Zavattini et al. Eur. phys. J. C (2022) 82:159

D(t) = 1bo sin ¢ (t) + 0‘12@) sin 2¢(t) + 0‘22(t) Sin[2¢(t) + 2A¢(t)]

* o, are the residual retardations from © of the HWPs. The modulator’s frequency is v, = 50 kHz.

* The detected intensity is demodulated at the modulator’s frequency v,, to obtain the ellipticity spectrum.

* The ellipticity spectrum includes the desired signal, systematicj effects and noise

I
Lot =~ I {n°(t) + + 20 () + ...}
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Generation of spurious harmonics from rotating HWPs
051,2(¢7T7T) v )(T) +

— (1 9

oz%% cos p(t) + cos 2¢(t) +

' 0,0 \ RO
gl .' , o | ! .' ,
S K[|k
ALIGNMENT WEDGE WEDGE + OSCILLATION @ v,,
21 D 1 21 2 2T
a§1; ~ —An—1, 9 ozg % —An Ary 8 ozg g —An or S
’ A n? A / A
(2) 2T D
oy

An ?92 19 \ Generate 4" harmonic but can be controlled to < 10~ level
A An? corresponding to an optical path difference/ AndL <1072 m

v The HWPs can be aligned separately using a frequency doubled laser @ 532 nm
EPJC 82 (2022) 159
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Baseline scheme for substrate birefringence measurements

ellipticity
modulator

polariser analyser @PDE'

1064 nm
532 nm watdv, F PDT

Yo sin 4¢(t Jr‘sm 2¢(t) 1n 2¢(t) + 22
Signal @ 4v,, Spurious signals Relative rotation phase error

Contain harmonics of v,, Degrades extinction

1,2 are the phase errors from 7 of the two HWPs and ¢(t) is their rotation angle

v 532 nm beam (HWP -> FWP) allows independent alignment of the rotating HWPs to reduce 1%t, 3™ and 4 harm.

v’ At 1064 nm, control the temperature of the wave-plates to reduce the dominating 2" harmonic

,2,3 — . . .
v’ Reduced systematlc peaks such that Oé( ) <10 % at all relevant harmonics and in particular, for the 4t

harmonic, & % < 107° Canbe subtracted vectorially =» Ellipticity sensitivity yy = 10°

v’ Can produce X-Y ‘maps’ of the static average birefringence of a substrate: An = -

L
v’ Optical path difference sensitivity Sopp < 1012m

v’ Calibration with the Cotton-Mouton effect in air using a rotating 2.5 T permanent magnet

F. Della Valle, Virgo Pisa internal workshop, 22/05/24
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Example: spectrum of a 1-mm thick Si sample

Spurious
harmonics from
temperature and
misalignment.

OPD = Anl, = 22~ Yo

Integration time = 32 s; Hanning window. T
9
—~ 10 :
é —— opd_no_sample|
c —— opd_si_sample |
o
-quJ 10-10
g * Peak due to silicon
© 1 birefringence:
o -1 |
7310 An=1.1X107;L=1mm
§
10-12
|  Calibration Cotton-
107 4 Mouton peak of air.
; An=39X101%L=0.84m
10™
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Example of birefringent map: first samples

Y (mm)

Silicon crystal samples (100), L = 1-mm thick, 2.5 cm x 2.5 cm, cut in house from larger sample
Measurements using 1064nm (significant absorption). Will be repeated with 1550nm
Subtracted vectorially the waveplate contribution (small effect)

Held with clamp from bottom edge (left): extra stress can be seen due to clamp.

Held without clamp (right). Upper half maintains same optical path difference.

Non uniform birefringence.

le—7 An . M le—-7 |

<An>=2.18e-07 7-(-L <An>=1.33e-07

Y (mm)

10 1 . 5 5 . A B . . . . 10

1249 -

0.5

2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
X (mm) X (mm)
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Reflective coating birefringence measurements

Reflection scheme for static birefringence maps of reflective coatings:
At present we have a 1064 nm beam aligned.
With a silver mirror the induced ellipticity is minimum and is, at present,
associated to the rotating HWP .

Will implement a 532 nm beam to distinguish the rotating HWP effect from the

mirror effect.

Will also introduce a rotating magnet for calibration.

PEM

Py
PDE Z& <

7

n@Vm \V@Vw:4VP

Mirror static birefringence
map measurement

F. Della Valle, Virgo Pisa internal workshop, 22/05/24
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Example of birefringent map of coatings: first samples

e Dielectric mirror with T = 10-3. ‘Uniform’.

* Silver mirror. * Polarization can be aligned in cavities.
* Very low birefringence. * Higher reflectivity, lower birefringence. For F = 10°,
» Measured ellipticity is dominated by the An-L=3x 10" m.

rotating half-waveplate. * Brandietal. Appl. Phys. B 65, 351-355 (1997);

F. Bielsa, Appl Phys B (2009) 97: 457-463

le-11 le-9

<An-L>=1.72e-11m <An-L>=1.10e-09 m

1.12
0 A \
1.11
2 1 \
1.10
E E B
E49 £ S
> > 1.09 3
51 % 1.08
s{ & 15 L 1.07
0
10 - 1.06

— X (mm) L
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Pictures
At present being used with rotating HWPs.

General view from input side General view from output side

8l
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Pictures: lab?2

Polarimeter at present being used with a low finesse cavity (F = 3000).

Near future: will be dedicated to birefringence measurements with the rotating HWPs at
]_064nm and 1550nm F. Della Valle, Virgo Pisa internal workshop, 22/05/24
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Thank you



To be implemented

Very near future:
Reflection scheme
for coatings

PEM

PDE KA <

nev,

\VJ @ V\V=4Vp

WP
inie’

Mirror static
birefringence
measurement map

Near future: Birefringence measurements as a function of depth?

Is birefringence tomography possible?

/]

4

A
Also vertical movement I

for ‘depth’

> A
% ” obe

WP, WP, PEM analyser
[] [l
u u Pou’r
A n @ Vi
: S+ PDT
L e e e e e e e e - ]

F. Della valle, VII’WP@ @t\sr__nawprkshop, 22/05/24
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Background work in sensitive polarimetry

Experimental study of the induced birefringence by an external magnetic field in vacuum

N, : : . : . L .
“Mrnn, ‘NNMN \"'V\(""‘g“"d\/\,\r\ Light-by-light interaction and vacuum magnetic birefringence.
e, i} ' Must be there: An = 4X1024 B2 with B in Tesla.
a) Leptonic e*e LbL scattering b) Leptonic e*e” vacum birefringence |nC|UdeS MCPS
o~
i; i § _ Radiative correction 1.45%
X

c) Leptonic e*e” vacuum birefringence with second order radiative corrections.

Contributions from hypothetical neutral light particles coupling

Wwé Wwi ng ‘— to two photons: ALPs

d) Dichroism due to generation of spin e) Birefringence due to virtual
zero bosons (e.g. axions) spin zero bosons (e.g. axions)
Euler-Kockel-Heisenberg Lagrangian predicts VMB — 2
o e S An = 3A.BZ
;CEK:ﬂ(C—Q—Bz)—i—M—e 1<C_2_B2) +7<;§> —|—
0 0 _

2x3
A = 2 YA 39,1072 T2 An=2.5-10723

- 2
45/1/0 mecC F. Della Valle, Virgo Pisa internal workshop, 22/05/24 20



Background work in sensitive polarimetry

Experimental study of the speed of light in an external magnetic field in vacuum

R T W‘“WV\,M Light-by-light interaction and vacuum magnetic birefringence.
s N i} ; Must be there: An = 4X1024 B2 with B in Tesla.
a) Leptonic e*e- LbL scattering b) Leptonic e*e’ vacum birefringence Includes MCPs

o~

_ Radiative correction 1.45%

i i

c) Leptonic e*e” vacuum birefringence with second order radiative corrections.

Contributions from hypothetical neutral light particles coupling

Wwé WWE( g:w ‘_ to two photons: ALPs

o vesoms (et oty ol gar Hsons (g, )
Euler-Kockel-Heisenberg Lagrangian predicts VMB S 2
et L\ (An = 3AcB
£EK:2—MO (6—2—32) +M—§ 1(72_32) +7<Z-B> + ...
@B,,=25T
I ) S X A0T2E T2 o st worienon, 22705 An=2.5-1023
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Comments and questions: 1

KAGRA
* Birefringence An = 10® with 15 cm thick sapphire substrate. Projected 2D map

Non uniform birefringence map of substrate (amplitude and direction). Phase shifts of 4 rad effect
An = 107 in silicon. Non uniform here too. For ET the desired thickness is 67 cm.

=>» Total phase shift = 1 rad
Is An = 107 still too large? If uniform, align polarization with axis of system birefringence. If non uniform...

%107
An 4 - 1.300

-1.175

-1.050

-0.925

-0.800 =
).800 =

<

T

-0.675

- 0.550

- 0.425

- 0.300

0 20 10 60 78
=010
Y [mm]

—40 —20 0 20 10 60 | 0.44 -60  -40 =20

Y [mm]

Figure 4. Mean distribution of bathrbirefringence Aarand d-anglencaloulated-fiomithésiy input-polarization
combinations which led to no miscalculations. https://doi.org/10.1038/541598-023-45928-0

—60



Comments and questions: 2
MIRRORS

* QOur experience and other’s too (Toulouse BMV group) have found that the static birefringence of coatings:

Anhigh finesse < AﬂIow finesse

* There seems to be a ‘more’ uniform map compared to substrates (over = few centimeters).

* Origin not clear. C. Rizzo’s, Toulouse, group attribute to first layer near substrate (F. Bielsa, Appl Phys B (2009) 97: 457—
463).

* With stoichiometry of silicon nitride coatings one can control stress on silicon. Maybe birefringence of mirrors with
silicon nitride?

* In our Fabry-Perot based polarimeters the static mirror birefringences were oriented to subtract each other and the

polarisation aligned to the axis of the cavity as a whole. In this way the two eigenmodes of the cavity are almost

superimposed.
2

10°
10-3 7] . . . . .
4 Fig. 6 Two different numerical calculations for the induced phase re-

10 tardation per reflection as a function of (1 — R). Solid curve: birefrin-
Sy 107 gence only for the first layer just after the substrate. Dots with error

10 - bars: calculation with random birefringence per each layer. Crosses:

o measurements plotted in Fig. 3

10°

68 2 '
3 2
0 F. Del® Valle, Virgo Pisa ih@ernal workshop, 22/05/24
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Example of birefringent map: first examples

* Silicon crystal samples (100), L = 1 mm thick, 3x3 cm, cut in house

* Measurements using 1064nm (significant absorption). Will be repeated with 1550nm

* Held from bottom edge: extra stress can be seen due to clamp like in the previous sample.

* Residual stress at edges from cutting of samples?

* This particular smaple had a broken corner. Other than the clamp effect (bottom) residual stress is seen.

le-7
<An>=3.21e-07
5
‘ w() A
. An = —
3 L
1
0 2
12
0 2 4 6 8 10 12 14 16 18 1

X (mm)

Y (mm)
[e)} > N o

[ee]
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Induced birefringence from stress

Residual stress will generate a (static) birefringence map inside the sample

* External stress will also generate a birefringence
An — CSOC (01 — 02)

* Csoc = Stess optic coefficiente [Pa?], o; and o, stress along perpendicular directions [Pal]
 Typical values of stress optic coefficient: Csoc = 10712 Pa?

* Fused silica: 3.4 x 1012 Pa?

 Crystalline Silicon (axes): (0.6 = 1)x 1012 Pgt

* Some initial work done for stress induced birefringence in Silicon as ET-LF substrate:
C. Kriger et al. Class. Quantum Grav. 33 (2016) 015012

* Sapphire: could not find a value for Cqq.

F. Della Valle, Virgo Pisa internal workshop, 22/05/24
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Intrinsic mirror birefringence noise

Sensitivity in optical path difference Sp, [m/+/HzZ]

® Experimental optical pa

W Shot-noise sensitivity limit

th difference

sensitvtes = eipticity ormaised for e[| ® NO €xperimental effort has reached shot-noise

number of passes N and wavelength .

sensitivity (green) with a high finesse F.P.

PVLAS-LNL

PVLAS-FE

PVLAS-TEST
OVAL

* There seems to be a common problem
afflicting all experiments

* This noise seems to be an intrinsic property of

10 E . . . .
the cavity mirrors (thermal noise in the tantala
10-20 d
_ T b i layers)
1 0’21 Experiment cavity amplification N wavelength Iengtf\\ 3 . . .
22 E\F/géjl?h?fg:ZOOS): muII:t.Lp.ass 23'032)5(;,52?"000 5325r11r;41,n1"(l)64 nm12..ir:1 E * Wlth |OW flnesse One does reaCh ShOt_nOISe
10 - : .P. ' nm 4m 3 . oy
WLASTEGOt6r Fb. 430000 losdnm  3am 1 Thelimitis not the heterodyne method
23 [|BMV (2014): F.P. 280'000 1064 nm 23 m
10 jvaLeon: PP S20000 1064nm tAmi N\ L3
0.001 0.01 0.1 1 10 100 1000

Signal frequency [Hz]

Sopp ~ 2.6 X 1018y, =077 m/vHz intrinsic noise

F. Della Valle, Virgo Pisa internal workshop, 22/05/24
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NO|se with non-rotating HWPs inside the F.P.

Important issue: Could a static birefringence from the HPWs degrade the sensitivity?
* Laser locking worked normally
* Measured a finesse of F =850
» Sensitivity did not degrade with the presence of the HWPs and was compatible with shot-noise

Sopp =101 m/VHz
Non rotating plates
1[,=0.8 mW

Shot noise
S, = 1.7-10® m/vHz

Mirror birefringence = 10 /reflection

80 1
Frequency [Hz]
: ~ 1012 i = i
OPDirrors . 10 m per reflectl_(l)gn (=1pm tthk)» OPD, ... JOPD,.._ >107 1/VHz
OPDiptrinsic in experiments > 10° m/VHz

ANgyar, = 0.01: thickness = 1 mm =» OPDgyat, = 10° m = Sppp = (OPDjyrinsic/OPDimirrors) “OPDguart; = 107 m/VHz

If the OPD noise was proportional to the absolute, QPD. *MMOWQUId have been = 1013 m/vHz
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HWP defect issues: temperature and alignment

Y(t) = g sin 4¢(t) sin 2¢(t) sm 2¢(t) + 2A0(1)]

Generating 4™ harmonic from o 5(7) in1/(1) : Expansion of the intrinsic HWP defects o, 5(¢):

01,2(¢, T,7) = af°)(T) + af}(:(1)) cos g(t) + | cos 26(t) +

* a®,, (from manufacturer) depends on TEMPERATURE T and appears @ 2" harmonic in Y(t)
« ", depends on WEDGE of wave-plates and their ALIGNMENT: appears @ 1%t and 3" harmonic int)(?)
* a®,, depends on ALIGNMENT generating 4™ harmonic in ¢( ) ust like a birefringence signal.

* Time modulation of aV; , due to transverse axis oscillation will also generate a 4" harmonic in lb(t)
r(t) = ro + orcos(o(t) + ¢sr)
The resulting ellipticity is the combination of the two HWPs.

v’ They can be aligned separately using a frequency doubled laser @ 532 nm
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Substrate birefringence measurements

Polarisation modulation scheme

* Method: rotate polarisation inside the substrate. Developed for the VMB@CERN experiment

* Insert two co-rotating half wave plates @ v, with a fixed relative angle A¢
* Heterodyne detection linearizes the ellipticity 1(¢) to be measured.

* We have 1064 nm working system and are buying a new 1550 nm laser (Thorlabs ULN15TK)

ellipticity

analyser
modulator Y

mirror

polariser mirror

G. Zavattini et al. Eur. Phys. J. C (2016) 76:294 \|!(t) at 4VW _>|. PDT

G. Zavattini et al. Eur. phys. J. C (2022) 82:159

Lout =~ To {1 (t) + +2n()T(t) + ...}

F. Della Valle, Virgo Pisa internal workshop, 22/05/24
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General scheme

! . e - M4 ellipticity
polariser mirror magnetic field mirror |:| modulator analyser
—
7 ” . | >
B 0 | - PDE
£ at 2vg I M at Vi :
E=iy+ o out >t PDT

F. Della Valle et al. Eur. Phys. J. C(2016) 76:24
A. Ejlli et al. Physics Reports 871 (2020) 1-74

L is the length of the birefringent medium (in our experiment Ang o B?)

AngL
% sin 29(t) = 1 sin 209(t)

The Fabry-Perot cavity amplifies ¢ by a factor N = 2F /. We had F = 7 x 10°.

Single pass ellipticity: 1) =

The ellipticity modulator allows heterodyne detection which linearizes the ellipticity 1) to be
measured and allows the distinction between a rotation and an ellipticity. The insertion of the A\ /4
wave plate allows measuring rotations.

The rotating magnetic field modulates the desired signal due to VMB

Lot =~ Io {n°(t) + + 2n(t)I'(t) + o}

. Della Valle, Virgo Pisa internal workshop, 22/05/24 30



