Man Nego

Advancements in sensing and actuation for a Superattenuator's Active Platform

Francesca Spada Istituto Nazionale di Fisica Nucleare - Pisa

francesca.spada@pi.infn.it

Virgo/ET Pisa Internal Workshop – 22-23/05/2024

The Superattenuator

▶ A multi-stage attenuation system based on the **inverted** pendulum principle

The Superattenuator

- pendulum principle
- control electronics and software for SA operation

The Superattenuator

- ► A multi-stage attenuation system based on the inverted pendulum principle
- Both passive and active damping
- ► A low-pass filter attenuating the ground motion - the main source of noise in the low frequency range - by 15 orders of magnitude at 10 Hz.

 10^{2}

The Einstein Telescope

- Detect high-z black holes, extend GW physics to cosmological distances
- Discovery potential in astrophysics, cosmology and fundamental physics

Extend the sensitivity band down to 3 Hz

Advancements in sensing and actuation for a Superattenuator's Active Platform — 5

The Superattenuator

We have to work on it!

Sensors

Francesca.R.Spada – INFN Pisa

Active platform upgrading the Superattenuator base ring into an active pre-isolator

a new accelerometer design

Active platform upgrading the Superattenuator base ring into an active pre-isolator

Francesca.R.Spada – INFN Pisa

Advancements in sensing and actuation for a Superattenuator's Active Platform — 7

The SA base-ring was originally equipped with **piezoelectric actuators** in case the ground tilt was large enough to create either large displacements of the top stage or problems to inertial feedback applied to the top

Francesca.R.Spada – INFN Pisa

Disk 0

Safety Structure

IP Legs

Preisolator

Aim:

- Better understanding of how to operate the 3DOF preisolator
- Potentially improve the foot design
- Explore the possibility of a 6DOF pre-isolator

Approach:

- Same **piezoelectric actuator**
- Same **foot** geometry
- Different geometry of the platform

Advancements in sensing and actuation for a Superattenuator's Active Platform — 10

Extensive standalone test campaign for the foot characterization:

- Preload effect on the dynamics Repeatability and homogeneity of the response • Long-term operation stability

- AISI 304 stainless steel structure with 3 mm thick 250-grade maraging steel membrane
- Customized P-216K033 PICA preloaded piezo actuator

x		- 1		1 1
		-	ELENCO PARTI	1
	ELEMENTO	QTA	NUMERO PARTE	DESCRIZIONE
	1	1	2.2	
	2		Rate	
201 - D	2	1	Duet2_1	
÷.	4	l	Dver2_2	
$\overline{\mathcal{D}}$	5	1	Over2_3	
Ron I	6	1	punta eferica piezo	
-8	,	12	150 7091 - 6	Rondelle platte - Serie normale - Grado prodotto C
-(1)			150 7091 - 5	Randelle platte - Serie normale - Grado prodotto C
010	9		150 4762 - M5 x 10	Vite can esagono incassato
	10	1	Pt P-2168033	
	11	1	Section	
	12	2	Corpe	
	13	12	250 4782 - M6 x 16	Whe can esapono incassato
	24	4	150 7091 - 3	Rondelle patte - Serie normale - Grado produtto C
	15	16	150 4762 - M5 x 16	Vite con esagono incassato
	36	- 4	150 4762 - H3 x 8	Whe can esagono incasalo
	17	2	14000010	
00	Ac	-Vk	like preis	olator "foc
.)	Fugilitie it Lacrastic	Constant a	Name a	100 29/19/2021

Validation of FEM simulations & **Parameters determination**

- Clean room long-term operation
- Tensile/compression machine measurement campaign

Seismic Isolation

Advancements in sensing and actuation for a Superattenuator's Active Platform — 12

a new accelerometer design

Francesca.R.Spada – INFN Pisa

Advancements in sensing and actuation for a Superattenuator's Active Platform — 13

Seismic noise @VIRGO site

THE ACCELEROMETERS ON VIRGO SUPERATTENUATORS

2021 measurement campaign @Sos Enattos

NHNM

Complete **redesign** of the inertial sensor developed in the 1990s for VIRGO

Optic cavity of the laser interferometer

Goal: sensitivity under 10⁻¹² m/sqrt(Hz) Interferometric readout of the mass displacement **Electrostatic actuation** at low voltage (<20 V) Status: engineering model in production

- Vacuum vessel & thermic isolation Feedback control
- Multihole platform for sensors and actuators

Suspension wires

LVDT + Actuator

Actuators control and LVDT readout algorithms on DSP hardware Monitoring of the LVDT signals with dedicated online software

Conclusions

next-generation experiments

- a 2 m Superattenuator is under installation in INFN Pisa laboratories as a test bench for specific elements upgrades
- to meet more demanding sensitivity requirements
- … and many other R&D activities and projects
 - * SA for the **ET** Era
 - *** AdV+** operation and upgrade

 - **CAOS** (PNRR) Project @ University of Perugia: construction of two long Superattenuators (~ 15 m) for future GW detectors

The INFN Pisa group is exploiting its long-term expertise in upgrading the Superattenuator to meet the requirements of

a dedicated standalone test bench with one-stage isolation in vacuum with feedback control for the new accelerometer

* NGSA (Open Call CSN5) improve passive performance of mechanical filter of a SA and probe new Inverted Pendulum in Nested configuration (NIP).

Thanks for your attention!

