

Fundamental physics with gravitational waves observations Walter Del Pozzo

Walter Del Pozzo

The GW Universe

Walter Del Pozzo

credit: LIGO-Virgo-KAGRA | A. Geller | Northwestern

- In GR, gravitational waves (GW) are wave solutions to Einstein's equations generated from time varying mass quadrupoles and propagating at the speed of light
- Shape of GW signal carries information about
 - binary dynamics and component nature
 - non-linear dynamics of space-time
 - final object nature

Fundamental aspects of GW physics

What physics can be probed

- Matching observed data with a solution to Einstein's equations allows to probe
 - Laws of space-time dynamics
 - Nature of black holes
 - Equation of state of neutron stars
 - Cosmology

What physics can be probed

- Matching observed data with a solution to Einstein's equations allows to probe
 - Laws of space-time dynamics
 - Nature of black holes
 - Equation of state of neutron stars
 - Cosmology

- Alternative theories lacksquare
 - Introduce extra degrees of freedom:
 - additional fields
 - higher-curvature terms \bullet
 - Challenge GR assumptions:
 - Lorentz invariance \bullet
 - Equivalence principle lacksquare
- Need tests in the strong-field

Extensions of GR

Lovelock theorem: In 4D, the only divergence free symmetric rank-2 tensor constructed only by the metric and its derivatives up to 2nd order and preserving diffeomorphism invariance is the Einstein tensor plus a constant.

- Analytical, parametric description of GW solutions in GR (Pratten et al, arXiv:2004.06503, Ossokine et al, arXiv:2004.09442, Varma et al, arXiv:1905.09300, Nagar et al, arXiv:1806.01772 and many more)
- Suitable for detection, parameter estimation and parametric tests of general relativity

GW templates in GR

NR effective 0.5 h(t)0.0 -0.5-1.0 ∟ 2.70 2.75 2.90 2.80 2.85 time(s)

GW in alternative gravity

- Alternative to GR can introduce extra-fields, curvature terms, challenge GR pillars, …
- Almost no full solution in non-GR known (but see Okounkova et al, arXiv:1705.07924)
- GW phase is modified:
 - non-GR action (extra fields, higher curvature, ...): no full non-linear description, only post-Newtonian
 - Propagation (Lorentz violations, graviton mass, ...): GR-like BBH dynamics, but modified GW propagation
 - non-GR BHs (extra-fields, exotic objects):
 - Anomalous quadrupole moments
 - ringdown spectrum
 - Echoes

- Multitude of potential extensions
- Modelling limitations imply agnostic know GR
 - overall and self-consistency che
 - perturb around the GR expectation let the data speak
 - GW generation, propagation and polarizations, BH ringdown hypo post-merger echoes

The LVK approach

									_
	Event	Tests performed							
cism we	Event	RT	IMR	PAR	SIM	MDR	POL	RD	F
	GW191109_010717	~	-	-	-	_	~	~	
	GW191129_134029	1	-	1	1	1	-	-	
cks	GW191204_171526	1	-	1	1	1	1	_	
	GW191215_223052	1	_	_	_	1	1	_	
	GW191216_213338	1	_	1	1	1	1	-	
	GW191222_033537	1	_	_	_	✓	1	1	
ion and	GW200115_042309	1	_	1	_	_	_	_	
	GW200129_065458	1	1	1	1	✓	1	1	
	GW200202_154313	1	_	1	_	1	_	_	
	GW200208_130117	1	1	_	_	1	1	_	
	GW200219_094415	1	_	_	_	✓	1	_	
C	GW200224_222234	1	1	_	_	1	1	1	
othesis,	GW200225_060421	1	1	1	1	1	1	_	
	GW200311_115853	1	1	1	_	1	1	1	
	GW200316 215756	1	_	./	./	_	_	_	

LVK, arXiv:2112.06861 Virgo Pisa internal workshop, 22nd May 2024

After subtraction of the best fit GR waveform, the residuals must be ulletconsistent with Gaussian noise

$p(residuals) \sim p(n)$

- Use BayesWave (Cornish & Littenberg, arXiv:1410.3835) to search for coherent power in the residuals
- Residual SNR gives the fitting factor FF

$$=\sqrt{\overline{S}}$$

- Match between GW150914 and the best GR template > 96% \bullet
- Analysis repeated for all GWTC-3 events
- No violation of GR observed

Residuals - GWTC-3

Waveform self-consistency

11

- Waveform models are (approximate) solutions to GR
- Split waveform in two:
 - Early stage (inspiral): predict final mass and spin predicted using NR
 - Late stage (post-inspiral): measure final mass and spin
- Inspiral-Merger-Ringdown consistency test (IMRCT)(Ghosh et al, 2016)

• Distribution of relative differences should be centred on 0

$$\frac{\Delta M_{\rm f}}{\bar{M}_{\rm f}} = 2 \frac{M_{\rm f}^{\rm insp} - M_{\rm f}^{\rm postinsp}}{M_{\rm f}^{\rm insp} + M_{\rm f}^{\rm postinsp}}, \quad \frac{\Delta \chi_{\rm f}}{\bar{\chi}_{\rm f}} = 2 \frac{\chi_{\rm f}^{\rm insp} - \chi_{\rm f}^{\rm postin}}{\chi_{\rm f}^{\rm insp} + \chi_{\rm f}^{\rm postin}}$$

No violation of GR observed

IMRCT in GWTC-3

Parametrised tests of GR

• GW waveforms are expressed in terms of effective se the Phenom family:

$$\begin{split} h(f;\theta) &= A(f;\theta)e^{i\Phi(f;\theta)} \\ \Phi(f;\theta) &= \sum_{k=0}^{7} (\varphi_k + \varphi_k^{(l)})f^{(k-5)/3} + \sum_{i \neq k} \varphi_i g(f) \\ &\text{post-Newtonian series} \\ \varphi_j &\equiv \varphi_j(m_1, m_2, \vec{s_1}, \vec{s_2}) \end{split}$$

- Modified theories of gravity change the series (e.g. Pl Yunes & Pretorius, arXiv:0909.3328, Cornish+,arXiv:1105.2088)
- Perturb the GW phase around GR (Li+,arXiv:1110.053 Agathos+,arXiv:1311.0420)

$$\hat{\varphi}_j \equiv \varphi_j^{GR} (1 + \delta \hat{\varphi}_j) \qquad \delta \hat{\varphi}_j = 0 \iff \mathbf{G}$$

• Bound violations by computing posterior distributions in concert with the physical parameters of the system

ries	f∩r	
	IUI	

	waveform regime		
		parameter	f-dependence
		$\delta \hat{arphi}_0$	$f^{-5/3}$
		$\delta \hat{arphi}_1$	$f^{-4/3}$
		$\delta \hat{arphi}_2$	f^{-1}
		$\delta \hat{arphi}_3$	$f^{-2/3}$
S	early-inspiral regime	$\delta \widehat{arphi}_4$	$f^{-1/3}$
		$\delta \hat{arphi}_{5l}$	$\log(f)$
PE:		$\delta \hat{arphi}_6$	$f^{1/3}$
		$\delta \hat{arphi}_{6l}$	$f^{1/3}\log(f)$
		$\delta \hat{arphi}_7$	$f^{2/3}$
30	intermediate regime	$\delta \hat{m{eta}}_2$	$\log f$
00,	intermediate regime	$\delta \hat{m{eta}}_3$	f^{-3}
P		$\delta \hat{lpha}_2$	f^{-1}
	merger-ringdown regime	$\delta \hat{\alpha}_3$	$f^{3/4}$
		$\delta \hat{lpha}_4$	$\tan^{-1}(af+b)$
s for the $\delta arphi_j$			

LVC, arXiv:1602.03841

Virgo Pisa internal workshop, 22nd May 2024

e

post-Newtonian

Post-Newtonian constraints

- Constraints on the spacetime dynamics
- Can be mapped to the space of specific theories (e.g. Yunes+,arXiv:1603.08955)
- Posterior distributions for $\delta \varphi_i$ show no evidence for violations of GR
- Constraints better than 10% level on the OPN and 1.5PN coefficients

LVK, arXiv:2112.06861 Virgo Pisa internal workshop, 22nd May 2024

- BH uniqueness implies than spin induced multipoles have a unique structure
- Leading order $Q = -\kappa a^2 m^3$, $\kappa = 1$ for Kerr
- Constraints on BH mimickers

Spin-induced quadrupole moment

- GWs are non-dispersive
- Modifications to GR predict the opposite
- Parametrisation $E^2 = p^2 c^2 + A_{\alpha} p^{\alpha} c^{\alpha}$
- E.g. $\alpha = 0$, "massive graviton" with mass $m_g = \sqrt{A_0}$

Propagation tests

LVK, arXiv:2112.06861 Virgo Pisa internal workshop, 22nd May 2024

- Gravitational waves in general relativity are transverse, tensorial waves
- Extensions to general relativity predict up to six polarisation states
 - Two transverse tensor states
 - Two longitudinal vector states
 - Two scalar states, one longitudinal and one "breathing"
- No evidence for the presence of non-GR modes

Gravitational wave polarisation states

Will, arXiv:1403.7377

Courtesy of Max Isi

 BH perturbation theory predicts that BHs "vibrate":

$$h(t) = \sum_{nlm} A_{nlm} e^{-\frac{t-t_0}{\tau_{nlm}}} \cos(\omega_{nlm}(t-t_0) + \varphi_{nl})$$

- Central frequencies ω_{nlm} and decay times τ_{nlm} are functions of BH mass and spin only (manifestation of the BH uniqueness hypothesis, Berti et al, arXiv:0512160)
- First observation: GW150914

The nature of the final object

LVC,arXiv:1602.03841

Ringdown constraints: pyRing

Carullo, Veitch, Del Pozzo, arXiv:1902.07527

Walter Del Pozzo

- Ringdown observed in several BBH remnants
 - pyRing (Carullo et al, arXiv:1902.07527): ringdown only time domain analysis
 - pSEOBNR (Ghosh et al, arXiv:2104.01906): modified SEOBNR waveform
- Independent determination of final parameters
- Tests of BH uniqueness

$$\log B_{GR,nGR} \sim 1$$

GWTC-3 Ringdown

Walter Del Pozzo

Constraints on BH charge

Walter Del Pozzo

Constraints on BH charge

Carullo et al, arXiv:2109.13961

Quantum black hole spectroscopy

Laghi, Carullo, Veitch, Del Pozzo, arXiv:2011.03816

Walter Del Pozzo

Quantum black hole spectroscopy

Laghi, Carullo, Veitch, Del Pozzo, arXiv:2011.03816

Walter Del Pozzo

BHs obey the Bekenstein-Hod bound

 Rate of information emission is limited from above, in *any* system

$$\mathcal{H} := \frac{1}{\pi} \cdot \frac{\hbar \omega_I}{k_B T} \le 1$$

 From ringdown emissions in GWTC-2, the bound is obey at the 91% credible level

Carullo et al, arXiv:2103.06167

- As the number of detected events will increase, so will the possibility of detecting $l > 2, m \neq 2 \mod s$
- Multi-mode BH spectroscopy
 - Smoking gun for violations of BH uniqueness theorems

- To date (and in our limited sensitivity):
 - **BBHs and GW behave just like GR** • predicts
- Many more and louder detections in the future
 - Improved sensitivities to tiny violations of GR
 - Better constraints on violation parameters
- Next few years will concretise BH spectroscopy
 - Are the merger remnant GR BHs?

Conclusions

