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Big Data in Science

Virgo Data
Order of ~50 MB/s → 
about 0.5 TB/day from 
all channels



Machine Learning and GW

A simple ADS search…



Context of Machine Learning

«A computer program is said to learn from experience E with 
respect to some class of tasks T and performance measure P, if its 
performance at tasks in T, as measured by P, improves with 
experience E» (T. Mitchell)



• Supervised: the algorithm is fed with labeled data, and learn the features that are 
best linked to each label (task driven)

• Classification
• Regression

• Unsupervised: No labels, features are extracted (data driven)
• Clustering
• Dimensionality reduction

• Reinforcement learning: trial and error strategy (experience driven)

Approaches to Machine Learning



What is a Neural Network?

Each node is a 
(nonlinear) processing 
unit
(perceptron model)

Weights updating 
depending on data



lInstrument characterization examples
– Study and characterize noise (glitches)
– Coupling among channels
– Denoising algorithms

lDetection and PE
– Fast detection for transients
– Search large amount of data (e.g. continuous waves)
– Fast Parameter Estimation

lDetector R&D
– Simulate complex systems (e.g. digital twins)
– Active control systems

Machine Learning and GW
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Credits: Wannapic studios (https://www.wannapik.com/)



lClassification and characterization of transient noise events (“glitches)
lGlitches can affect data quality and duty cycle
lGlitch morphologies can be complex
lDeep learning promising tools

Glitch characterization

Abbott et al 2017



lSupervised approach requiring labeled datasets
lLabels can be acquired via Citizen Science projects (GravitySpy@LIGO

,GWitchHunters @Virgo)
lGoal: Infrastructure for glitch classification in real time

Glitch classification & Citizen Science

Based on Convolutional Neural Networks



lFirst pipeline and tests on simulations (e.g. Razzano&Cuoco 2018)
lTests on real data (O1+O2) using 2D CNN
lExplored 1D CNN (e.g Talpini&Razzano 2020)

lCheck with GravitySpy and citizen science project
lTests on O3 data (custom pipeline vs gravitySpy)+ 
comprehensive analysis of O3 glitches 
(work with M. Vacatello) 

Steps of glitch classifications in Pisa

Simulations

O1+O2

O3



Detector characterization & citizen science

GravitySpy:

Citizen science + Machine Learning

Zevin et al. 2017, CQG,34,6

Classifications
made by 
citizen scientists
Used to train ML



The REINFORCE project

https://www.reinforceeu.eu/

Horizon 2020 
EU-funded project on 
multimessenger approach
to citizen science

https://www.reinforceeu.eu/


Overview of GwitchHunters
• 3 Levels (desktop + mobile)

• Classifications only
• Classification + localization
• Classification + localization 
+ comparison with Aux channels

• Collaboration UNIPI (coordination), 
EGO, Ellinogermaniki Agogi, Uni 
Valencia, Oxford

• Organized engagement activities
• Italian and English Versions
• Spanish and Greek in progress



Overview of GwitchHunters

Next Steps: we are no longer supported by REINFORCE
 à However, efforts to continue and put O4 data



lAuxiliary channels are a rich data source
lApply ML to auxiliary channels data (work with L. Negri, A. Gennai, V. 

Boschi)
lUsing Variational Autoencoders to cluster data related to seismic activity 

(using channels from SA)
lGMM + VAE to cluster data in low dim space
lTransformers for anomaly detection (paper in prep)

Work using Auxiliary Channels

lApplication to digital twins? (EU project 
InterTwin

lData release in progress on GWOSC



lFast detection and localization essential to trigger EM follow-up
lDeep Learning provides fast detection (classification) and localization (regression)
lTests on simulated data for BBHs, BNSs and eccentric Close Encounters
lCan we provide fast pre-alert (early warning)?

Signal detection: Localization and Early Warning

Localization
Work with S. Randino, thesis 2020
2 approaches
• Localization as a classification problem
• Localization as a regression problem

Early Warning
Work with L. Papalini, thesis 2022
• CNN on timeseries
• Sliding window approach
• Test on simulations



lCNN-based architectures have been extensively tested
lNew architectures have been developed, can be used for GW analysis
lEccentric close encounters: short, burst-like signals: can we detect and perform 

fast PE on them?

Machine Learning for Close Encounters

• Firsts tests using CNN-based classification
(work with N. Sorrentino, PhD thesis 2023)

• Next steps:
Using Normalizing flows and run on real data
(De Santi et al 2024 , see talk by F. De Santi)

• Not only Normalizing Flows
Transformers are quite
promising

Dedicated pipeline for transient sources
Tested on ET MDC
(See talk by L. Papalini)



lWe are exploring Reinforcement Learning to control real systems
lAim to application to Pendulum Inverted Pendulum (and/or other systems)
lWork in two directions: simulations/algorithms + tests on prototype
lApproach Policy Based Gradients (Actor-critic mechanism, G. Bartoli thesis)
lConnected to development of new position sensors 

ML for optimal control

See M.A. Palaia talk

F-domain simulations (OctoPyus)

Reinforcement Learning
algorithms

PIP

Basic testbench



Gravitational Waves from pulsars
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Searching for GW pulsars

Sieniawska & Bejger (2016)

l Constraints on ellipticity
l Equation of State
l Stellar Evolution
l Magnetic Field Geometry

Frequency evolution+sky location

Sky location, NO frequency evolution

NO sky location, NO frequency evolution 



From multiwavelength to multimessenger
l Pulsars still undetected in GWs
l What can we learn from EM observations?
l Exploiting on EM observations to estimate observing scenarios, find

candidates for CM searches
l What about transient (e.g. glitches) emission?

Optical
Super faint, ULs
Very good localization
e.g. VLT, GranTecan

X-rays
Thermal and nonthermal emission
MM high-energy modeling
e.g. Chandra, XMM-Newton, NICER

Gamma rays
Nonthermal emission
High-energy modeling
e.g. Fermi-LAT

Radio
Good channel for discoveries
Very good localization
e.g. Parkes, GBT, FAST

Razzano et al 2012

Razzano et al 2024 Fiori et al 2024



Work with A. Lipovanu thesis

Population Studies
l Simulating realistic populations of neutron stars in the Galaxy
l Propagate synthetic NSs in the Milky Way
l Derive Multiwavelength and GW emission properties
l Observing scenarios for Current and future detectors



*

Pulsar glitches: from gamma-ray to GW
l Pulsar Glitches are sudden changes in spindown properties of pulsars
l Can be seen in EM radiation What can we say on GW emission?
l Starquakes? 
l Glitch monitoring fundamental for CW searches
l Multimessenger link with high-energy, gamma-ray pulsars
l Collaboration with UC Santa Cruz (NASA Fermi  GI funded project, 2023)
l Phenomenological study with A. Fiori, L. Papalini, G. Cozzolongo (Erlangen 

Center for Astroparticle Physics)

Stopnitzky & Profumo 2014, ApJ 787, 114 NASA Fermi GI, 2023



Conclusions
l Pisa very active in Machine Learning applications to GW

l Noise characterization
l Superattenuator-related studies
l Detection, Early Warning and Parameter Estimation for GW signals 

l Among first groups to work on ML, various collaborations
l EGO
l Ellinogermaniki Agogi
l Univ of Glasgow
l Univ of Valencia
l Univ. of Turin
l Univ of Erlangen
l Univ of Hamburg
l Univ of California, Santa Cruz
l Univ of Missouri
l INGV and Dept Earth Science, Univ of Pisa

l Future developments
l Finalize online pipeline for glitch classification
l Further develop ML for Superattenuators
l Finalize pipeline for detection and parameter estimation for burst signals (real 

data and ET MDC)
l Explore models for seismic and geophysical applications 
l Implement ML-based controls to PIP and other seismic attenuation systems


