(Pxford
hysics.

Fireball@LNF
Unvelling the Physics of

Relativistic Pair Plasma Jets In
the Laboratory

R. Bingham (STFC, Strathclyde)
G. Gregori (Oxford) Xy el Py e Sl PO
On behalf of the Fireball Collaboratlon /‘ '}%ff" —_—




(Pxford Unvelling the Physics of Relativistic Pair
hysics. Plasma Jets In the Laboratory

« GRBs and Blazar jets are examples of energetic astrophysical beams.

« Particle transport in turbulent and magnetized plasmas remains a
challenge:
— What makes the beam unstable?
— How are magnetic fields produced and amplified?
— How can cosmic-rays be accelerated to the highest energies?

* Observations have not provided direct evidence of these processes.
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=> So far the main effort of electron-positron beam generation has been
focused on using high-power lasers.

=> Laboratory experiments can probe the microphysics that is not accessible
by observations (or even numerical simulations).
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Proposed setup for BTF
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= Using e*, e or secondary beam (neutral) from high-Z primary.

=> Flux concentrator to collimate pair beam.

=> Plasma cell simulates background interstellar plasma.

= Interaction laser to probe inverse Compton and high-field physics.

Compared to previous approaches: higher densities, better control of
charge neutrality, higher rep rate, etc.
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(Pxford Questions on the micro-physics of
hysics. pair jets we want to address
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What process is responsible for the emission from GRBs?

—We will compare synchrotron vs inverse Compton scattering to test
predictions from Fireball vs Cannonball.
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FLUKA simulations

We have already investigated pair beam [m
generation on BTF using a Ta converter
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=> These kinetic instabilities are the main culprit for the generation of internal
shocks, magnetic fields and particle acceleration.

=> In our work at Fireball @CERN we have successfully investigated the
formation of these instabilities (Arrowsmith et al. Nat. Comm. 2024).

=> However, no access at CERN will be possible after 2025 (LS3); no high-
power laser is available; no dedicated e*, e beams.

=> Fireball@LNF is an important continuation of what we started at CERN.
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=> Fireball @LNF builds upon our CERN experience.

=> At BTF we will develop a higher density plasma cell (by
replacing the current 1 kW with a pulsed-5 kW RF power
supply; and operating at higher pressures, above 10 mTorr) —
n, > 10%cm

= Expect to achieve conditions where shocks start forming.




(Pxford Design and preparation needed for
hysics., Installation into BTF
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Maser instability explains non-thermal [m
cyclotron radio emission from jets
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=> e*, e or pair beams enter a
region of converging B-field.

= Cyclotron resonance condition:
for small parallel wavenumber,
resonant frequency is shifted
below cyclotron frequency by an
amount dependent on the
particle energy.

=> The effect of cyclotron resonance
is to produce diffusion of the
particle in velocity space, mainly
in the perpendicular direction
(momentum conservation).



(Pxford Maser instability explains non-thermal [E
hysics. cyclotron radio emission from jets

=> Maser emission is believed to explain some
(enigmatic) FRB observations, but lack of direct
measurements and simulations cannot rule out
other processes.

Rotation

axis -~ =>» Maser process also occurs in star flares,

v magnetars and other compact objects.

—> The maser effect has been seen in the

BJ. Kellett et al., ArXi;/ Astrophysics, .
0701214 (2007) laboratory (Speirs et al. 2010) only for low-

energy electrons and not for relativistic pairs.

=> At BTF we will study the maser emission, its
polarization and total radiated power by
considering beams of electrons, positrons and
pairs (expect change in the polarization).
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xford Numerical simulation with realistic

hysics.. beam parameters shows Maser
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=> Expect maser emission concentrated at 0.8 THz (and harmonics), with
polarization dependence (depending on the changes).

=> Maser emission depends on distance between Ta target and flux concentrator.

=> LNF (C Di Giulio), Oxford and STFC have expertise in the detection at these
frequencies, but further work is needed to finalize the design.
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xford ~ GRB emission models: synchrotron vs
hysics. iInverse Compton scattering

* Fireball model: instabilities =» shocks = B-field =» radiation =» cosmic rays.
* Alternative model (Cannonball) where plasma blobs are ejected.
*  Which is the correct model?

* Experiments can be used to compare the two processes.
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Beam imaging . _
Beam imaging
* Synchrotron: Instabilities produce a B-field which scatter pairs and emit radiation.

* Inverse Compton scattering: using laser to produce plasma blobs, which emit x-rays which scatter off the pair
beam.

* Large frequency separation between these two processes.
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How to calculate the scattering rate?

The number of scattered photons per electron is:
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=> Preliminary analysis shows that we can generate 100s of ICS photons at 20-
40 MeV.

=> Spectrometer design needs to be performed but LNF (C Curceanu, A Scordo)
and Oxford have expertise within team to develop this.



(Pxford Synchrotron emission from plasma K
hysics. INstabilities occurs at optical wavelenghts

* Peak of synchrotron emission expected at optical wavelengths (and distributed
over a large wavelength range).

 Kinetic (and atomic) simulations used to estimate synchrotron power vs optical

line radiation from background plasma.

« Comparison between synchrotron and ICS will provide important information
towards our understanding of how GRB's spectra are formed.
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Thank you for your attention!
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