Searching for new light particles with PADME

Venelin Kozhuharov for the PADME collaboration

Faculty of Physics, Sofia University and Laboratori Nazionali di Frascati, INFN

67th LNF Scientific Committee

27 – 28 May 2024 Frascati, Italy

Istituto Nazionale di Fisica Nucleare

PRL 126 (2021) 14, 141801

ROOKHAVEN

FERMILAB 2018 DATA

FERMILAB 2019 + 2020 DATA

MUON g-2 RESULTS

Outline

PADME @ LNF •

- Present status
 - Prospects
- Conclusions

•

Techniques @ accelerators

Fixed target

- Direct production (usually X-strahlung)
- Search for decays through event reconstruction (tracking)
- Production of secondary beam
 - Usually in a thick target
 - Searching for new particles in meson decays
 - M_x limited by the meson mass, coupling sensitivity – by statistics

Beam dump

- Production: A'/a/h/?-strahlung, shower, absorption of secondaries
- Detection: everything is signal vs kinematics of the final state
 - The new particle has to survive the passage through the dump

e⁺e⁻ colliders

- Associate production of new states
- Sensitivity depends on the resolution on invariant/missing mass of the final state

 $M_{\rm X}$

 Also searches through meson production and constrained initial state

Positron Annihilation into Dark Matter Experiment

Data taking

- PADME commissioning and **Run I** started in Autumn 2018 and ended on February 25th
 - \sim ~7 x 10¹² positrons on target recorded with secondary beam
 - PADME DAQ, Detector, beam, collaboration commissioning
 - Data quality and detector calibration
- PADME test beam data
 - July 2019, few days of valuable data
 - Certification of the primary beam
 - Detector performance/calibration checks
 - Primary beam with $E_{beam} = 490 \text{ MeV}$

2020 era – RUN II: primary beam

- July 2020
 - New environment/detector parameter monitoring and control system
 - Remote operation confirmation
- Autumn 2020:
 - A long data taking period with $O(5x10^{12}) e^+$ on target
 - \circ E_{beam} = 430 MeV

SM: Two photon events

$e^+e^- \to \gamma\gamma$ cross section

- Below 0.6 GeV known only with 20% accuracy
- Can be sensitive to sub-GeV new physics (e.g. ALP's)
- . Using 10% of Run II sample
- Tag-and-probe method on two back-to-back clusters
- Exploit energy-angle correlation

SM: $e^+e^- \rightarrow \gamma\gamma$ cross section

PADME RUN III

Probing X17

X17 @ PADME strategy

PADME strategy: $e^+e^- \rightarrow X17 \rightarrow e^+e^-$

 $p_{4\epsilon_4}$

е

p35.

Bhabha scattering dominates the event rate in the background contribution for high P_{e^+}

Resonant cross section significant \rightarrow X17 event yield

$$\begin{split} \mathcal{N}_{X_{17}}^{\text{Vect.}} \simeq 1.8 \cdot 10^{-7} \ \times \left(\frac{g_{ve}}{2 \cdot 10^{-4}}\right)^2 \ \left(\frac{1 \text{ MeV}}{\sigma_E}\right) \\ \mathcal{N}_{X_{17}}^{\text{ALP}} \simeq 5.8 \cdot 10^{-7} \ \times \left(\frac{g_{ae}}{\text{GeV}^{-1}}\right)^2 \ \left(\frac{1 \text{ MeV}}{\sigma_E}\right) \\ \sigma_{\scriptscriptstyle F} \text{ - beam energy spread} \end{split}$$

Production of O(10³) X17 events with 10¹⁰ positrons on target

Change in $\sigma_{tot}(e^+e^- \rightarrow e^+e^-)$

Signal selection: $N_{2cl} = N_{e+e-} + N_{vv}$

- ECal based: two in-time clusters with two body kinematics
- Background estimation: ~ 4 %
- The measurement is N_{2cl}/Flux (E_{beam})

• Flux = PoT

Signal selection: selection efficiency

- Single hit identification threshold of 15 MeV
- Cluster reconstruction efficiency is stable over time
 - With the bad crystals excluded from the reconstruction

Geometrical efficiency (acceptance)

- Dominated by the cut on the outer radius of a cluster in the calorimeter
- Beam center drift limits the maximal R_{cut}

Beam position monitoring

Timepix 3 array

- Matrix of 2 x 6 Timepix3 detectors
 each 256x256 pixels
- Operated in 2 modes:
 - 。 image mode, integrating
 - streaming mode, feeding ToT and ToA for each fired pixel

Recovered

COG at the ECal front face from 2 cluster events

Signal and background: MC study

- Signal acceptance of the level of O(10%)
 - Outer radius cut with respect to the beam CoG at ECal
- Background contribution of the order of 40000 events per invariant mass point
- Both are dependent on the e⁺e⁻ invariant mass
 - Accidental cancellation in the S/B ratio, for a fixed g_{ve}
- The total uncertainty is of O(1%)

Positron flux measurement

- PoT is primarily measured by an OPAL lead glass block downstream of the setup
- Additional detectors to control the PoT systematics
 - \circ and to derive correction factors
- Several testing campaigns
 - A few positrons -> clear 1e, 2e, etc. peak identification
 - O(2000) PoT cross-calibration with the FitPix

- Higher energy runs
 - \circ $\,$ control of the NPoT systematics

arXiv:2405.07203 [hep-ex]

2 clusters selection stability

G (650V) = (14001 ± 1121)

8 % uncertainty on NPoT

NOTE: consider more points for gain curve determination

Absolute positron flux measurement

- Calibration of the lead glass @ 650 V with respect to the BTF FitPix
- Correction applied to the FitPix data to account for the high positron density

- Correction uncertainty of the order of 1 %
 - \circ $\,$ Common to all the measurements

 $Q_{1e} = (0.235 \pm 0.0043) \text{ pC}$

Uncertainty on Q_{1e}: < 2%

Positron flux measurement

- The beam spread in Y direction varies within ~2 mm during the data taking
- The beam spread in X is energy dependent
 - However in X the containment is largely ensured

Correction due to the beam movement (convolution of TimePix & LeadGlass) results in systematics contribution < 1 %

The energy containment correction uncertainty well below 1 %

Signal yield: theoretical input

[[]Phys. Rev. 176 (1968) 900]

arXiv:2403.15387 [hep-ph] ,Accepted in PRL, Thanks to Fernando Arias-Aragón, Luc Darmé, Giovanni Grilli di Cortona, Enrico Nardi

$$d\sigma = \frac{d^3 p_X}{(2\pi)^3} \int \frac{d^3 k_A}{(2\pi)^3} \frac{(2\pi)^4}{8E_X E_A E_B |v_A - v_B|} n\left(\vec{k}_A\right) |\mathcal{M}|^2 \delta^{(4)}(k_A + p_B - p_X)$$

- Line shape modification due to electron motion
 - Bound e⁻ momentum changes the e+e- invariant mass
- Peak height decreases, width increases,
 S/B decreases
- n(k_A) electron momentum density function
 - Theory: calculate it using Hartree-Fock⁴
 - Experiment: X-ray determination of electron momentum density

Physica B 521 (2017) 361-364

Sensitivity estimation

- Sensitivity depends on S/B and the uncertainty on the background determination
 - Statistical (N_B), 47 points with O(10¹⁰) PoT, $\Delta E = 0.75$ MeV
 - Systematics (e.g. N_{poT})
 - Background: $N_B \sim 45000$ events per point
 - Signal acceptance

• Sources of systematics

- Relative PoT estimation O(0.5%)
- Acceptance 0.75%
- Beam energy spread 0.05 %
- Signal shape uncertainty
- Beam
- Time dependent ECal efficiency
- Beam energy uncertainty controlled by Hall probes < 10⁻³
- ECal calibration
- Normalization systematics
 - absolute PoT 5 %

PADME MC sensitivity estimate for RUN III

- Expected 90% CL upper limits are obtained with the CLs method
 - modified frequentist approach, LEP-style test statistic
- Likelihood fits performed for the separate assumptions of signal + background vs background only

 $Q_{\text{statistics}} = -2 \ln (L_{s+b} / L_b)$

- Pseudo data (SM background) is generated accounting for the expected uncertainties of nuisance parameters + statistical fluctuations
- 150 Nuisance parameters:
 - POT of each scan point
 - Common error on POT (scale error)
 - Signal efficiency for each scan point
 - Background yield for each scan point
 - Signal shape parameters: signal yield
 @ a given X17 mass and g_{ve}
 - Signal shape parameter: beam-energy spread

How to improve:

Towards PADME RUN IV

• The results from PADME RUN III will be dominated by PoT systematics, two clusters acceptance acceptance systematics

Exploit a different normalization channel which could possibly cancel part of the systematic effects

- Natural candidate: $e^+e^- \rightarrow \gamma \gamma$
 - Same 2 body kinematics: similar ECal illumination, systematics due to bad ECal crystals largely cancels
- Back on the envelope estimation: need knowledge of N_{vv} at 0.5 % for each scanning point
 - \circ σ(e⁺e⁻ →γγ)_{E=300 MeV} ~ 2 mb, Acc (e⁺e⁻ →γγ) ~ 10 % ⇒ O(10k) γγ events per 10¹⁰ PoT
 - Need 4 times higher statistics per scan point
 - Less scan points due to the widening of X17 lineshape because of the electronic motion
 - Higher intensity by a factor of 2
- Need good separation between charged and neutral final states

Testbeam results, tracking at 22 degrees

Ex-Me

Strategy: N_{e+e-}/N_{γγ}

- e⁺e⁻ tagging with high efficiency
 - And well controlled mis-tagging probability
- Micromegas tagger double sided readout gas chamber with X/Y readout

e-/e+ identification

- Installing a new detector in the PADME setup due to rate limitations of the present tagger
- A completely new detector technology to be used in PADME
 - Gaining expertise and manpower from LNF ATLAS group

PADME tagger

- A novel micromegas readout plane suggested
 - Rhomboidal pads for X and Y direction, decrease the mutual capacitance
- Variable HV depending on the distance from the beam center
 - Low HV in the center, measure the beam multiplicity
 - Additional control on the PoT
 - $\circ~$ Higher HV in periphery to ensure close to 100 % efficiency

Status

- Gas mixture:

Ar:CF₄:i-C₄H₁₀ = 88:10:2

- Readout SRS system with APV ASIC hybrid
 - An adapter card in preparation to allow APV25 to accept/record trigger signal
 - \circ $\,$ Timing and event matching $\,$
- PCBs under preparation, to be ready for assembly in July
- Readout exists, integration with PADME DAQ ongoing (online vs offline)
- Gas supplies premixed gas (7-10 days) vs gas mixer in BTFEH1

PADME RUN IV schedule

Requested period	Hall	Beam	Objective	Prerequisites
30 September - 6 October Week 40	BTFEH2	Electron beam (secondary)	 Timepix wrt Leadglass efficiency measurement Timepix calibration Leadglass calibration: response dependence wrt to HV (scan) and beam multiplicity 	- Timepix transport to BTFEH2
4 - 17 November Week 45	BTFEH1	No beam	 Connection of PADME chamber to the the BTF line Timepix and LeadGlass installation in place Installation of Micromegas tracker with the gas infrastructure 	 Green light from PADME Calorimeter crystals resurrection Operational Micromegas, validated with cosmic in LAB Green light from beam group
Week 46		Positron beam (secondary)	 Switch ON the detectors in the setup (warm up) Common DAQ with event synchronization test Micromegas first test with beam 	 Installed Micromegas together with the gas (consumables) infrastructure Installed Timepix and precise position survey
9 - 16 December Week 50	BTFEH1	Positron beam (primary, if possible)	 Full PADME operation Detectors commissioning for RUN IV (efficiency, LeadGlass calibration, etc.) Test and validate the new PADME Micromegas tracker 	 LeadGlass positioning wrt Timepix Operational Micromegas attached to the PADME ECal
20 - 31 January	BTFEH1	Primary positron beam	 Beam commissioning Focusing at ECal / Timepix3 plane 	 Operational PADME experiment Operational Timepix/ECal
February - July	BTFEH1	Primary positron beam	COLLECT GOOD DATA	

Conclusions

- PADME technique is extremely powerful for electro
- Dark photon analysis in RUN I/II data pushed forward thanks to application of ML methods for hit reconstructions in high rate environment
 - Good time resolution at the price of slightly degraded energy resolution
 - Allows to keep background under control at O(30000) PoT per bunch
- X17 analysis advances
 - \circ $\,$ Beam flux and beam geometry understanding, paper submitted to JHEP $\,$
 - X17 line shape extracted from theory and validated with compton profile PRL
 - Common theory-experimental strategy paper in preparation
 - Signal acceptance and background estimation under control with systematics O(1%)

Aiming to open the box for the summer conferences

- An example for a very successful cooperation between theory and experiment
 - Pushing the theory and an advancement of the field in general
- A major improvement to PADME setup before RUN IV
 - Precise e^+e^- / $\gamma\gamma$ discrimination with a Micromegas tracker
 - $\circ~$ Allow probing the full unexplored region for the X17 allowed parameter space

PADME: Precision And Double Monitoring of Everything

beamline

ISMD52

8/21/23

Terminal Voltage: 1.7 MV Ion: H⁺, He⁺, C⁺, Si⁺, Cu⁺, Au⁺...

Beam Current: 1nA – 2microA

Main tasks: RBS PIXE Ion implantaion Astro nuclear reactions ISMD2023

2 arm spectrometer (ATOMKI like) ATOMKI group participants ⁷Li and ¹¹B target used.

Anomaly confirmed at 1225 KeV E_p. Not observed for lower bombarding energies.

Calorimeters

ECAL: The heart of PADME

- 616 BGO crystals, 2.1 x 2.1 x 23 cm³
- BGO covered with diffuse reflective TiO₂ paint
 - additional optical isolation: 50 100
 µm black tedlar foils

- Calibration at several stages:
 - BGO + PMT equalization with ²²Na source before construction
 - Cosmic rays calibration using the MPV of the spectrum
 - Temperature monitoring

Small Angle Calorimeter (SAC)

- 25 crystals 5 x 5 matrix, Cherenkov PbF₂
- Dimensions of each crystal: $3 \times 3 \times 14 \text{ cm}^3$
- . 50 cm behind ECal
- PMT readout: Hamamatsu R13478UV with custom dividers
- Angular acceptance: [0,19] mrad

Recorded bunch

Charged particle detectors

- Three sets of detectors detect the charged particles from the PADME target (at E_{beam} = 550 MeV):
 - **PVeto**: positrons with 50 MeV < p_{e+} < 450 MeV
 - **HEPVeto**: positrons with 450 MeV $< p_{e+} < 500$ MeV
- EVeto: electrons with 50 MeV < p_{e+} < 450 MeV
 96 + 96 (90) + 16 (x2) scintillator-WLS-SiPM RO
- channels
- Segmentation provides momentum measurement down to ~ 5 MeV resolution

Custom SiPM electronics, Hamamatsu S13360 3 mm. 25µm pixel SiPM Differential signals to the controllers, HV, thermal and current monitoring

- Online time resolution: ~ 2 ns
- Offline time resolution after fine T_0 calculation better than 1 ns

Physics case of PADME

- Bremsstrahlung in the field of the target nuclei
 - Photons mostly @ low energy, background dominates the high missing masses
 - An additional lower energy positron that could be detected due to stronger deflection
- 2 photon annihilation

500 60 MMiss² (MeV)

M²_{miss} no cuts

- Peaks at $M_{miss} = 0$
- Quasi symmetric in gamma angles for $E_{\gamma} > 50$ MeV
- 3 photon annihilation
 - Symmetry is lost decrease in the vetoing capabilities
- Radiative Bhabha scattering
 - Topology close to bremsstrahlung

Summary: NP @ PADME

arXiv:2012.04754

Data taking

- Resonance scanning
 - $_{\circ}~$ 47 points in the range 263 MeV 299 MeV
 - Spacing between the points: $\Delta E = 0.75 \text{ MeV}$
 - $_{\circ}~$ Naive precision on $M_{_{X17}}\sim 20~KeV$
- Off resonance data sets:
 - $_{\circ}~$ Above Resonance: 402 MeV: $~\sim 1.2E10~POT$
 - Below Resonance: 205-211 MeV, 5 different energies, ~ 5E10 POT
- First selection aimed at N(2cl)/N_{PoT} studies:
 - Provides information about the stability of the detector operation and acceptance during the data taking
 - $_{\circ}~$ 2 in time clusters in the $\Delta t < 5 ns$ in ECal
 - Energy and radius cuts, CoG consistency
 - Cluster energy vs angle correlation compatible with a 2 body final state.

