

RE

2

.

CUBESATS AND DISTRIBUTED **ASTRONOMY: FROM THE** HERMES FLEET TO THE FLIGHT OF THE ALBATROS, SURFING THE WAVES OF QUANTUM SPACE-TIME

ANDREA SANNA

UNIVERSITY OF CAGLIARI

ON BEHALF OF THE ALBATROS AND THE HERMES COLLABORATIONS

"QUAGRAP meeting" – Napoli – 18-19 April 2024

SCIENTIFIC CHALLENGES FOR THE NEXT DECADES

Multi-Messenger Astronomy

Testing Quantum Gravity theories

DEVELOPMENT OF MULTI-MESSENGER ASTRONOMY

GW170817

- NS-NS merging
- Host galaxy NGC 4993
- ~ 40 Mpc
- 70 observatories

MULTI-MESSENGER PARADOX

We need a high-energy All-sky Monitor with large area to allow Multi–Messenger Astronomy to develop from infancy to maturity!

MONOLITHIC VS DISTRIBUTED HIGH ENERGY OBSERVATORIES

BeppoSAX

AGILE

Pros:

- Reliability
- long heritage

Pros:

- modularity
- limited cost
- quicker development
- Low risk

HIGH ENERGY RAPID MODULAR ENSEMBLE OF SATELLITES - HERMES

Modular X/gamma-ray ALL-SKY MONITOR

A swarm tens/hundreds of LEO nano/micro satellites equipped with:

- keV-Mev scintillators,
- sub µs time resolution
- large FoV

IDEAL TARGETS: GAMMA-RAY BURSTS

- sudden and unpredictable bursts of hard-X / soft gamma rays with huge flux
- most of the flux detected from 10–20 keV up to 1–2 MeV,
- bimodal distribution of duration (0.1-1.0 s & 10.0-100.0 s)

IDEAL TARGETS: GAMMA-RAY BURSTS

Crashing neutron stars can make gamma-ray burst jets

21.2 millie

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzo

26.5 milliseco

Long GRBs BH collaps of a massive star

Short GRBs NS-NS binary system coalescence

GRB – THE FIREBALL MODEL multiple collision of relativistic shells ($\Gamma = [1 - (v_{iet}/c)^2]^{-1/2} \ge 100$)

explains rapid variability •

ullet

synchrotron radiation and inverse Compton scattering

Data 40-700 keV (A=1136 cm2, courtesy of F. Frontera)

X-RAYS.

VISIBLE

LIGHT,

RADIO WAVES

GRB LOCALISATION – TEMPORAL TRIANGULATION (IPN LEGACY)

Determination of source position through delays in Time of Arrival (ToA) of an impulsive (variable) signal over 3 (or more) spatially separate detectors

GRB front

position of the source in the sky: α , δ (2 parameters, N_{PAR} = 2)

Number of independent delays: $N_{DEL} = N_{SATELLITES} \times (N_{SATELLITES} - 1) / 2$

Accuracy in determining α and δ with N_{SATELLITES}: $\sigma_{\alpha} \approx \sigma_{\delta} = c \sigma_{ToA} / < baseline > \times (N_{DEL} - N_{PAR} - 1)^{-1/2}$

GRB LOCALISATION – TEMPORAL TRIANGULATION (IPN LEGACY)

QUANTUM GRAVITY MINIMAL LENGTH HYPOTHESIS, LIV AND DISPERSION REL<u>ATION FOR PHOTONS IN VA</u>CUO

Existence of a Minimal Length (String theories, etc.)

 $I_{MIN} \approx I_{PLANCK} = [Gh/(2\pi c^3)]^{1/2} = 1.6 \times 10^{-33} \text{ cm}$

implies:

i) Lorentz Invariance Violation (LIV): no further Lorentz contraction
ii) Space has the structure of a crystal lattice
iii) Existence of a dispersion law for photons *in vacuo*

Accumulation of delays in light propagation: $\Delta t_{QG} = \xi \left(D_{TRAV} / c \right) \left[\Delta E_{obs} / (\zeta E_{PI}) \right]^n$ The distance traveled by photons takes into account the cosmological

The distance traveled by photons takes into account the cosmological expansion:

$D_{TRAV}(z) = (c/H_0) \int_0^z d\beta (1+\beta) / [\Omega_{\Lambda} + (1+\beta)^3 \Omega_M]^{1/2}$

DISPERSION RELATION FOR PHOTONS IN VACUO AND TRAVEL TIME DELAYS

 Ω_{Λ} : ratio between the energy density due to the cosmological constant and the critical (closure) density of the Universe

 Ω_{M} : ratio between the energy density due to the matter and the critical (closure) density of the Universe

THE ENERGY AND REDSHIFT DELAY DEPENDENCE

 $\Delta t_{OBS} (E_{OBS}, z) = \Delta t_{INT} (E_{OBS}, z) + \Delta t_{QG} (E_{OBS}, z)$

Low z

Time lags caused by Quantum Gravity effects:

- $\propto |E_{phot}(Band II) E_{phot}(Band I)|$
 - $\propto D_{TRAV}(z_{GRB})$

Time lags caused by prompt emission mechanism:

- complex dependence from E_{phot}(Band II) and E_{phot}(Band I)
- independent of $D_{TRAV}(z_{GRB})$

QUANTUM GRAVITY: OBSERVATIONAL RESULTS

Fermi GBM & LAT detection of short ($\Delta T < 1$ s) GRB 090510 z = 0.903(3), d = 1.8 × 10²⁸ cm (Ω_{Λ} = 0.73, Ω_{M} = 0.27, h = 0.71) (Abdo et al. 2009)

"Cleanest" constraints based on one photon detected at 31 GeV $\Delta t_{31Gev} \le 859 \text{ ms} (+30 \text{ ms} \text{ because GRB started } 30 \text{ ms} \text{ before } 0)$ $\delta t/\delta E \le 30 \text{ ms/GeV} (35 \text{ Mev} - 31 \text{ GeV})$

LIV predictions: Relative Locality Models (Freidel, Smolin 2011): $\xi = \frac{1}{2}$; n=1

Data of GRB 090510 imply: $M_{QG} \ge 0.595 m_{PLANCK}$ ($\Delta t_{31Gev} \le 859 + 30 ms; E_{ph} \ge 28 \text{ GeV}$)

Caveats, assumptions:

i) photon at 31 GeV emitted after $t_{\text{START GRB}} = -30 \text{ ms}$ (not before) ii) physical delays in emission process not considered

VERY LARGE EFFECTIVE AREA

Voyage 2050 - long term plan in the ESA science programme

GrailQuest: hunting for Atoms of Space and Time hidden in the wrinkle of Space–Time

A swarm of nano/micro/small-satellites to probe the ultimate structure of Space-Time and to provide an all-sky monitor to study high-energy astrophysics phenomena

Contact Scientist: Luciano Burderi

VERY LARGE EFFECTIVE AREA

 $\sigma_{CCF} \approx 100 \ \mu s/ (N_{PHOT}/12000)^{-1/2} (GRB with ms variability)$ 10000 nano-satellites of A = 100 cm²

 ΛCDM cosmology with $\Omega_{\Lambda} = 0.6911$ and $\Omega_{Matter} = 0.3089$

$rac{\mathbf{dN_E(E)}}{\mathbf{dA} \ \mathbf{dt}} = \mathbf{F} imes \mathbf{F}$	$\int \left(\frac{\mathbf{E}}{\mathbf{E}_{\mathrm{B}}}\right)^{\alpha} \exp\{-(\alpha-\beta)\mathbf{E}/\mathbf{E}_{\mathrm{B}}\}$	$\}, \mathbf{E} \leq \mathbf{E}_{\mathrm{B}},$
	$\left(\left(\frac{\mathbf{E}}{\mathbf{E}_{\mathrm{B}}} \right)^{eta} \exp\{-(lpha - eta)\}, ight.$	$\mathbf{E} \geq \mathbf{E}_{\mathrm{B}}.$

Energy band	$\mathbf{E}_{\mathbf{AVE}}$	\mathbf{N}	$\mathbf{E_{CC}}(\mathbf{N})$	\mathbf{N}	$\mathbf{E_{CC}}(\mathbf{N})$	Δ	${f \Delta T}_{ m LIV}~(\xi=1.0,~\zeta=$		
${f MeV}$	${f MeV}$	$egin{array}{l} (eta=-2.5) \ {f photons} \end{array}$	$\mu {f s}$	$egin{array}{l} (eta=-2.0) \ {f photons} \end{array}$	$\mu {f s}$	$\mu {f s}$	$\mu {f s}$	$\mu {f s}$	$\mu {f s}$
						$\mathbf{z} = 0.1$	$\mathbf{z} = 0.5$	z = 1.0	z = 3.0
0.005 - 0.025	0.0112	$3.80 imes \mathbf{10^6}$	0.38	$\mathbf{3.02 imes 10^6}$	0.43	0.04	0.25	0.51	1.42
0.025 - 0.050	0.0353	$1.40 imes \mathbf{10^6}$	0.62	$f 1.17 imes 10^6$	0.69	0.13	0.72	1.46	4.10
0.050 - 0.100	0.0707	$1.10 imes 10^6$	0.71	$9.98 imes \mathbf{10^5}$	0.74	0.27	1.43	2.93	8.21
0.100 - 0.300	0.1732	$\mathbf{8.98 imes 10^5}$	0.79	$f 1.00 imes f 10^6$	0.74	0.66	3.51	7.19	20.10
0.300 - 1.000	0.5477	$f 2.07 imes 10^5$	1.64	$\mathbf{3.82 imes 10^5}$	1.20	2.09	11.11	22.72	63.56
1.000 - 2.000	1.4142	$f 2.63 imes 10^4$	${\bf 4.56}$	$8.20 imes \mathbf{10^4}$	2.60	5.40	28.68	58.67	${\bf 164.12}$
2.000 - 5.000	3.1623	$f 1.07 imes 10^4$	7.19	$f 4.92 imes 10^4$	3.35	12.07	64.12	131.19	367.00
5.000 - 50.00	15.8114	${f 3.52 imes10^3}$	$\bf 12.54$	$2.95 imes \mathbf{10^4}$	4.33	60.35	320.62	656.00	1834.98

LARGE CONSTELLATIONS

Starlink Constellation 12,000 sats SpaceX (Elon Musk)

- 6000 @ 1200 km (by March 2024)
- 60 satellites launched on 16/05/2019
- LEO @~550 km
- optical inter-satellite links
- 100 ÷ 500 kg satellites (mass production) WHISHFUL THINKING:
 board a 100 cm² effective area GAGG crystal
 SDD photodetector (position sensitive + coded mask?) module on each satellite. 120 m² effective area All Sky Monitor!

THE ENERGY AND REDSHIFT DELAY DEPENDENCE

GRB intrinsic spectral lag

Observer frame vs Rest frame

Lags come from GRB central engine emission mechanism at the rest frame: $E_{rf} = E_{obs} (1+z)$

Moreover, cosmological dilation implies: $\Delta t_{INT} (E_{OBS}, z) = \Delta t_{INT} (E_{rf}) (1+z)$

There is no direct evidence of a correlation between $\Delta t_{INT}(E_{rf})$ and redshift z.

Quantum Gravity delay

Observer frame vs Rest frame

$$\Delta t_{QG} (E_{OBS}, z) = \Delta t_{QG} (E_{rf}, z) = \frac{\xi}{H_0} \left(\frac{E_{rf}}{\zeta E_{pl}}\right)^n \times$$

 $\times \left(\frac{1+n}{2}\right) \left(\frac{1}{1+z}\right)^n \int_0^z \frac{(1+z')^n dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$

THE ENERGY AND REDSHIFT DELAY DEPENDENCE

Total observed spectral lag:

$$\Delta \mathbf{t}_{\text{total}} \left(\mathsf{E}_{rf}; \mathsf{z} \right) = \Delta t_{INT} \left(E_{rf} \right) \left(1 + z \right) + \frac{\xi}{H_0} \left(\frac{E_{rf}}{\zeta E_{pl}} \right)^n \left(\frac{1 + n}{2} \right) \left(\frac{1}{1 + z} \right)^n \int_0^z \frac{(1 + z')^n dz'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + n}{2} \right) \left(\frac{1}{1 + z} \right)^n \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}} \right)^{n-1} \left(\frac{1 + z'}{\sqrt{\Omega_m (1 + z')^3 + \Omega_N z'}$$

Let's define the quantity:

$$au_{total}(E_{rf};\mathbf{z}) = rac{\Delta t_{total}(E_{rf};\mathbf{z})}{(1+\mathbf{z})} =$$

$$= \Delta t_{INT}(E_{rf}) + \frac{\xi}{H_0} \left(\frac{E_{rf}}{\zeta E_{pl}}\right)^n \left(\frac{1+n}{2}\right) \left(\frac{1}{1+z}\right)^{n+1} \int_0^z \frac{(1+z')^n dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$$

THE ENERGY AND REDSHIFT DELAY DEPENDENCE

We now define the function u(z):

$$u(z) = \left(\frac{1+n}{2}\right) \left(\frac{1}{1+z}\right)^{n+1} \int_0^z \frac{(1+z')^n dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$$

This formalism allows us to express the lags as follows:

$$\tau_{total}(E_{rf};z) = \Delta t_{INT}(E_{rf}) + \frac{\xi}{H_0} \left(\frac{E_{rf}}{\zeta E_{pl}}\right)^n u(z)$$

OBSERVATIONAL HINTS ON GRB'S INTRINSIC DELAYS

THE POWER OF THE SAMPLE

Let's consider a sample of N GRBs with known z and let's define a number M of common energy bands in the rest frame of the GRBs.

For each energy band $E_{rf,i}$ we can fit the function

$$\tau_{total}(E_{rf,i}; \mathbf{z}) = \Delta t_{INT}(E_{rf,i}) + \frac{\xi}{H_0} \left(\frac{E_{rf,i}}{\zeta E_{pl}}\right)^n u(\mathbf{z})$$

Obtaining *M* values of the quantity

$$\eta(E_{rf,i}) = \frac{\xi}{H_0} \left(\frac{E_{rf,i}}{\zeta E_{pl}}\right)^2$$

THE POWER OF THE SAMPLE

Finally, we define the new variable

$$s(E_{rf}) = \frac{1}{H_0} \left(\frac{E_{rf}}{E_{pl}}\right)^n$$

Therefore, we can linearly fit the *M* sample $\eta(E_{rf})$ with the function:

$$f(E_{rf}) = \left(\frac{1}{\zeta}\right)^n s(E_{rf}) = \Delta_{QG} s(E_{rf})$$

Interestingly, the uncertainty on Δ_{QG} improves as

THE ALBATROS MISSION

(Astonishingly Large Baseline Array Transient Reconnaissance Observatory from Space)

Properties:

- 3 satellites in heliocentric orbits
- 2x400 cm² detectors (~20 kg) per satellite pointing in opposite directions
- keV MeV energy band
- Sub-microsecond time resolution
- 4π steradians FoV (whole sky)
- 1 GRB/day detection rate
- 75% expected success in GRB redshift determination with ground-based facilities follow-up

THE ALBATROS MISSION: CART-WHEEL ORBITS

3 satellites in "Cart-wheel" orbits (e.g., LISA orbits):

- 3 heliocentric orbits with a=1AU
- 3 slightly different small inclinations (i≈degrees) w.r.t. to eclipting plane
- Equatorial triangle of side $D \approx 2.5 \ 10^6 \text{ km}$
- Contact to ground up to 23 hours per day
- Wet mass ~ 230 kg per satellite
- Dry mass ~ 165 kg per satellite

THE ALBATROS MISSION: LOCALIZATION CAPABILITIES

Determination of source position through Delays in Time of Arrival (ToA) of an impulsive event (variable signal) over 3 (or more) spatially separate detectors

Transient source in the sky defined by time of the event, position in the sky: T_0 , α , δ (3 parameters, $N_{PAR} = 3$)

Statistical accuracy in determining α and δ with N_{SAT}:

 $\sigma_{\alpha} \approx \sigma_{\delta} = c \sigma_{ToA} / \langle baseline \rangle \times (N_{SAT} - N_{PAR})^{-1/2}$

 $\sigma_{\alpha} \approx \sigma_{\delta} \approx c \sigma_{ToA} / B \approx 24 \text{ arcsec} \times (B/2.5 \times 10^{6} \text{ km})^{-1} \times (\sigma_{ToA} / 1 \text{ ms})$

HERMES PATHFINDER + SPIRIT IN A NUTSHELL

In orbit demonstrator

- HERMES Pathfinder: six 3U cubesat equipped with advanced X-ray/gamma/ray wide field detector; funded by ASI & EC H2020
- SpIRIT: 6U cubesat managed by University of Melbourne and funded by ASA. Host 1 HERMES-PF
 X-ray/gamma-ray payload + S-band system.

HERMES PATHFINDER: PAYLOAD

Silicon Drift Detector + GAGG Cristals

Scintillator Crystal size: 0.7×1.2×1.5 cm Crystal type: Photo detector: Energy range: Energy resolution: Effective area: FOV: Temporal resolution: Mass: Volume

60 GAGG crystals 120 SDD (1x0.5 cm) 3 keV ÷ ≥ 0.5 Mev ~ 10% at 30 keV $\sim 56 \, {\rm cm}^2$ ~ 3 steradians (FWHM) ~ 0.5 µs ~1.5 kg < 10×10×12.5 cm

HERMES PATHFINDER & SPIRIT PAYLOAD FAMILY PICTURE

FMI

SpIRIT

PFM

SPIRIT: STATUS UPDATE

- Launch! December 1st, 2023, OK
- Deployment OK, Detumbling OK
- Safe mode just after detumbling because of a failure of a magnetorque
- Communications OK, UHF beacon received by SatNogs
- Communications OK, about 15m per day of link with AU GS
- OBC OK

Communications between PDHU - PMS and MMS established. PDHU OK

HERMES PATHFINDER: STATUS UPDATE

- •PFM fully integrated, environmental test to support qualification review started in Dec. 2023 @POLIMI labs. QR closed in Jan 2024
- •FM1, integration started end Nov. 2023, and full integration by Feb 2024.

•Acceptance review for six FMs second half of 2024

•Launch early 2025

THE HERMES PROJECT: THE MOVIE

Thanks for the attention!

Please join the HERMES Science Team: https://www.hermes-sp.eu/?page_id=3643#ScienceTeam