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e LV gravity and Black Holes’ structures



Lorentz Violating gravity

* A%good way” to break LLI is to assume an inhomogeneous scaling behavior between

time and space:
d P arX1v:0901.3775, PHorava , 2009
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* One can introduce a Stueckelberg vector field, the Aether, that parametrizes the time
direction:
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Matter Fields

 The theory allows the presence of higher (spatial) derivative operators:
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Matter Fields

 The theory allows the presence of higher (spatial) derivative operators:
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Superluminal particles:
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Horizons

 Killing Horizons are no more causal boundaries! What is a Black Hole?



Horizons

Killing Horizons are no more causal boundaries! What is a Black Hole?

It U, becomes orthogonal to a compact
surface, we have a Universal Horizon




Universal Horizon

In principle the UH is a global concept. If however the spacetime is stationary and
asymptotically flat, namely

fZ%Uﬂ=gxgﬂy=O (U-x) l-():l

Then the definition of the Universal Horizon can be given locally

UH=1{(y-U)=0, (y-a)#0j
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UH in Schwarzschild

e We will consider a Schwarzschild solution of the theory:
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o The Universal Horizon is located at:
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Matter fields

n

2j .
* Let us take a massless scalar field on a BH geometry: [Vﬂ Vi — Z A2j]—2 (=AY ] ¢ =0
j=2

* In the (¢, r) plane we have the dispersion relation in the eikonal approximation:
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e  And aconservation equation: Q=N +kV N=WUW-p V=0U-p



Modes’ structure

o We will follow a wavepacket yq,
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* For superluminal dispersion relations:

(ra) = —— #—
kK k

= cp(r, o)

Fxn

FDP, S.Liberati, M.Herrero-Valea, M.Schneider
Phys.Rev.D 106 (2022)



Modes’ structure

k is determined by the equation
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Phys.Rev.D 106 (2022)



Modes’ structure

. k is determined by the equation
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e When y *= N?—V?changes sign, we
have a degeneracy in the solutions
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FDP, S.Liberati, M.Herrero-Valea, M.Schneider
Phys.Rev.D 106 (2022)



Turning points

e Wk can take the discriminant A(r, @) of the polynomial and study the roots
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Limits
When r - oo (N — 1), we have only two real solutions
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In the following we will “turn oft” the

blue (ingoing) mode




Limits
When r — ryy (N — 0), we have four real solutions, two soft and two hard ones
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Hard solutions near UH

. When r — ryy (N — 0), the hard solutions are squeezed onto a single mode
dw = 2— ®—wy=2 §
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* The propagation happens with the phase

velocity ¢, = w/k




UH emission

 Although classically forbidden, we can compute the tunneling amplitude across the
UH
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UH emission

 Although classically forbidden, we can compute the tunneling amplitude across the
UH
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UH emission

 Although classically forbidden, we can compute the tunneling amplitude across the
UH
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Propagation of the outgoing ray

* 'The emission at the UH is insensitive to A. However we expect something to happen
when A - o



Propagation of the outgoing ray

* 'The emission at the UH is insensitive to A. However we expect something to happen
when A - o
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Propagation of the outgoing ray

e Forverylow a the red mode and the orange one assume “almost” the shape of a null

trajectory
0
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Propagation of the outgoing ray

. For very low a the red trajectory assumes “almost” the shape of a null trajectory

dii = [cg(r, o) U, + Sﬂ]dx/"
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e In our particle interpretation y,, = A e™r
S, =— J'kﬂdx” k,dx" < di

P
( c(r,a)U,.+ S, >
dv + dr
c(r,a)U, + 8§,

kﬂdx” = ()




Propagation of the outgoing ray

For very low a the red trajectory assumes “almost” the shape of a null trajectory
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Expanding for o < 1
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Propagation of the outgoing ray

. For very low a the red trajectory assumes “almost” the shape of a null trajectory
c,(r,a)U, + S, f
k,dx! = Q|dv + dr f &
u c (r,)U, + 3, 5 out

e  Expanding for a < 1
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* The same shape also for the orange ray!




Propagation of the outgoing ray

* The existence of the red mode outside the KH can be interpreted as the tunnel-out of
the orange mode
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Propagation of the outgoing ray

* The existence of the red mode outside the KH can be interpreted as the tunnel-out of
the orange mode




Propagation of the outgoing ray

* A necessary condition for lingeringis  ,,_,
d2
"
dr?
. This way we get a bound
a<a ~0114 ; " :

FDP, M. Herrero-Valea, S. Liberati, M. Schneider
ArXiv: 2310.01472



Other approaches - I

° After the KH, C, 18 “almost” flat %r %
g,m/ — g/,w o (Cg — I)UMUIJ U = C_Uﬂ *
. |
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* The particle “seem” to come from a
surface slightly inside the KH
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Other approaches - 11

* The same result can be obtained by using the so-called “eftective temperature function”,
which captures the exponential peeling of the rays.
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Other approaches - 11

* The same result can be obtained by using the so-called “eftective temperature function”,
which captures the exponential peeling of the rays.
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(Quantum state

We have two different shapes for y¥’: do they describe the same global state?
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Adiabatic approximation

o If {y7?} are adiabatic in [ryy, r¢yl, then we have compatibility between the two states
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(Quantum state

So, the state is fixed by imposing the Dot
regularity at the Horizon (like in GR) ‘




(Quantum state

So, the state is fixed by imposing the -
regularity at the Horizon (like in GR)

Then, we can “evolve” the state
adiabatically until the Killing Horizon,

where the low-energy population is given by
I
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D1iscussion

* We have seen that BHs in LV Gravity enjoy radiative properties. In particular, the UH
radiates with the temperature fixed by x4

* Low-energy particles feel the KH while propagating outwards, reprocessing the modes
with non-thermal deviation.

* These two features seem to describe the same global state, which defines a spectrum
dominated by the UH at high energy and by the KH at low energies. This recovers HR

in the limit A — oo.
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* We have seen that BHs in LV Gravity enjoy radiative properties. In particular, the UH
radiates with the temperature fixed by x4

* Low-energy particles feel the KH while propagating outwards, reprocessing the modes
with non-thermal deviation.

* These two features seem to describe the same global state, which defines a spectrum
dominated by the UH at high energy and by the KH at low energies. This recovers HR

in the limit A — oo.

Thank you!



