Hawking radiation in Lorentz violating gravity

Francesco Del Porro

In collaboration with: S. Liberati, M. Herrero-Valea and M. Schneider

QUAGRAP meeting - April 18-19, 2024, Napoli

INFN

Based on: JHEP 12 (2023) 094 (ArXiv:[2310.01472](https://arxiv.org/abs/2310.01472))

- LV gravity and Black Holes' structures
- Modes' structure
- The role of KH
- Quantum state
- Discussion

• LV gravity and Black Holes' structures

- Modes' structure
- The role of KH
- Quantum state
- Discussion

Lorentz Violating gravity

- - $\vec{x} \rightarrow b\vec{x},$
-

One can introduce a Stueckelberg vector field, the Aether, that parametrizes the time direction:

• A "good way" to break LLI is to assume an inhomogeneous scaling behavior between time and space:
arXiv:0901.3775, P.Horava, 2009

$$
U_{\mu} = \frac{\partial_{\mu} \tau}{\sqrt{g^{\alpha \beta} \partial_{\alpha} \tau \partial_{\beta} \tau}} \qquad S[g, \tau] = -\frac{1}{16\pi}
$$

$$
-\frac{1}{16\pi G} \int_{\mathcal{M}} \sqrt{-g} \left(R + c_{\theta} \theta^2 + c_{\sigma} \sigma_{\mu\nu} \sigma^{\mu\nu} + c_{\alpha} a_{\mu} a^{\mu} \right)
$$

$$
\dot{\tau}, \quad \tau \to b^3 \tau
$$

• The theory allows the presence of higher (spatial) derivative operators:

Matter Fields

$$
S_m[\phi] = \frac{1}{2} \int_{\mathcal{M}} \sqrt{-g} \; \phi \left[\nabla_{\mu} \nabla^{\mu} - \sum_{j=2}^{n} \frac{\beta_{2j}}{\Lambda^{2j-2}} (-\Delta)^{j} \right] \phi \qquad \Delta = \nabla_{\mu} \gamma^{\mu \nu} \nabla_{\nu}
$$

Matter Fields

The theory allows the presence of higher (spatial) derivative operators:

 $J^+(S)$

$$
S_m[\phi] = \frac{1}{2} \int_{\mathcal{M}} \sqrt{-g} \; \phi \left(\nabla_{\mu} \nabla^{\mu} - \sum_{j=2}^{n} \frac{\beta_{2j}}{\Lambda^{2j-2}} (-\Delta)^{j} \right) \phi \qquad \Delta = \nabla_{\mu} \gamma^{\mu \nu} \nabla_{\nu}
$$

Superluminal particles:

$$
\omega^2 = k^2 + \beta_4 \frac{k^4}{\Lambda^2} + \dots + \beta_{2n} \frac{k^{2n}}{\Lambda^{2(n-1)}}
$$

Different notion of causality:

J.Bhattacharyya, M.Colombo, T.P. Sotiriou, ArXiv: 1509.01558

• Killing Horizons are no more causal boundaries! What is a Black Hole?

• Killing Horizons are no more causal boundaries! What is a Black Hole?

If U_μ becomes orthogonal to a compact surface, we have a Universal Horizon

Universal Horizon

 $\mathscr{L}_{\chi}U_{\mu}=\mathscr{L}_{\chi}g_{\mu\nu}$

 $UH = \{(\chi \cdot U)$

• In principle the UH is a global concept. If however the spacetime is stationary and asymptotically flat, namely

Then the definition of the Universal Horizon can be given locally

$$
0 = 0, \quad (\chi \cdot a) \neq 0
$$
\n
$$
\begin{cases}\n2\kappa_{UH} = (\chi \cdot a)_{UH}\n\end{cases}
$$

$$
= 0 \qquad \qquad (U \cdot \chi)_{i^0} = 1
$$

UH in Schwarzschild

• We will consider a Schwarzschild solution of the theory:

$$
ds^{2} = \left(1 - \frac{2M}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{2M}{r}} - r^{2}dS_{2}
$$

• The Universal Horizon is located at:

$$
U_{\mu}dx^{\mu} = \left(1 - \frac{M}{r}\right)dt + \frac{M}{r - 2M}dr
$$

$$
\chi^{\mu}\partial_{\mu} = \frac{\partial}{\partial t}
$$

 $= 0 \rightarrow \{r = M\}$

$$
UH = \left\{1 - \frac{M}{r}\right\}
$$

Outline

• LV gravity and Black Holes' structures

- Modes' structure
- The role of KH
- Quantum state
- Discussion

Matter fields

• Let us take a massless scalar field on a BH geometry: $\int \nabla_{\mu} \nabla^{\mu}$ –

In the (t, r) plane we have the dispersion relation in the eikonal approximation:

n ∑ *j*=2 *β*2*j* $\frac{1}{\Lambda^{2j-2}}(-\Delta)^j$] $\phi=0$

$$
\begin{cases}\ni U^{\mu}\partial_{\mu}\phi = \omega\phi \\
iS^{\mu}\partial_{\mu}\phi = k\phi\n\end{cases} \implies \omega^2 = k^2 +
$$

$$
\Rightarrow \omega^2 = k^2 + \sum_{j=2}^n \frac{\beta_{2j}}{\Lambda^{2j-2}} k^{2j}
$$

$$
\omega N + kV \qquad N = (U \cdot \chi) \qquad V = (S \cdot \chi)
$$

• And a conservation equation: Ω = *ωN* + *kV N* = (*U* ⋅ *χ*) *V* = (*S* ⋅ *χ*)

We will follow a wavepacket ψ_{Ω_0}

$$
\Psi_{\Omega_0}(r) = \int_0^\infty \frac{d\omega}{\sqrt{2\pi\sigma}} \phi_{\Omega}(r) e^{-\frac{(\omega - \omega_0)^2}{2\sigma}}
$$

$$
c_g(r, \alpha) = \frac{d\omega}{dk} \neq \frac{\omega}{k} = c_p(r, \alpha)
$$

• For superluminal dispersion relations:

• *k* is determined by the equation

$$
\frac{k^4}{\Lambda^2} + \left(\frac{N^2 - V^2}{N^2}\right)k^2 + \frac{2\Omega V}{N^2}k - \frac{\Omega^2}{N^2} = 0
$$

• *k* is determined by the equation

$$
\frac{k^4}{\Lambda^2} + \left(\frac{N^2 - V^2}{N^2}\right)k^2 + \frac{2\Omega V}{N^2}k - \frac{\Omega^2}{N^2} = 0
$$

• When $\chi^2 = N^2 - V^2$ changes sign, we have a degeneracy in the solutions $2 = N^2 - V^2$

Turning points

We can take the discriminant $\Delta(r, \alpha)$ of the polynomial and study the roots

When $r \to \infty$ ($N \to 1$), we have only two real solutions $\omega = \Omega > 0$ $k_{red} > 0$, $k_{blue} < 0$ lim *r*→∞ $\psi_{\Omega_0}(r) =$ $+\infty$ 0 *d*Ω 2*πσ* $\phi_{\Omega}(r) e^{-\frac{(\Omega - \Omega_0)}{2\sigma}}$ 2 2*σ*

In the following we will "turn off" the blue (ingoing) mode

Limits

When $r \rightarrow r_{UH}$ ($N \rightarrow 0$), we have four real solutions, two *soft* and two *hard* ones

Hard solutions near UH

When $r \to r_{UH}$ ($N \to 0$), the hard solutions are squeezed onto a single mode

• The propagation happens with the phase $\text{velocity } c_p = \omega/k$

$$
d\omega = 2\frac{d\Omega}{N} \qquad \omega - \omega_0 = 2\frac{\Omega - \Omega_0}{N}
$$

$$
\lim_{N\to 0^+} \frac{2}{\sqrt{2\pi\sigma N}} e^{-\frac{4(\Omega-\Omega_0)^2}{2\sigma N^2}} = \delta(\Omega-\Omega_0)
$$

$$
\lim_{r \to r_{UH}^+} \psi_{\Omega_0}^{hard} = \phi_{\Omega_0}
$$

UH emission

• Although classically forbidden, we can compute the tunneling amplitude across the UH

$$
\Gamma = e^{-2Im S_p} \qquad Im S_p = -Im \int_{r_1}^{r_2} k_r d
$$

UH emission

• Although classically forbidden, we can compute the tunneling amplitude across the UH

UH emission

• Although classically forbidden, we can compute the tunneling amplitude across the UH

$$
\Gamma = e^{-2Im S_p} \qquad Im S_p = -Im \int_{r_1}^{r_2} k_r d
$$

Outline

- LV gravity and Black Holes' structures
- Modes' structure
- The role of KH
- Quantum state
- Discussion

• The emission at the UH is insensitive to Λ . However we expect something to happen when $\Lambda \to \infty$

• The emission at the UH is insensitive to Λ . However we expect something to happen when $\Lambda \to \infty$

FDP, M. Herrero-Valea, S. Liberati, M. Schneider ArXiv: 2310.01472

The rays for which $\alpha = \Omega/\Lambda \ll 1$ linger at the KH for long time

• For very <u>low *α*</u> the red mode and the orange one assume "almost" the shape of a null trajectory

2

4

6

8

10

 $d\bar{u} = [c_g(r, \alpha)U_{\mu} + S_{\mu}]dx^{\mu}$

For very <u>low α </u> the red trajectory assumes "almost" the shape of a null trajectory

$$
d\bar{u} = [c_g(r, \alpha)U_{\mu} + S_{\mu}]dx^{\mu}
$$

In our particle interpretation $\psi_{\Omega} = A e^{iS_p}$

$$
S_p = -\int k_\mu dx^\mu \qquad k_\mu dx^\mu \propto d\bar{u}
$$

$$
k_\mu dx^\mu = \Omega \left[dv + \left(\frac{c(r, \alpha)U_r + S_r}{c(r, \alpha)U_v + S_v} \right) dr \right]
$$

For very <u>low α </u> the red trajectory assumes "almost" the shape of a null trajectory

$$
k_{\mu}dx^{\mu} = \Omega \left[dv + \left(\frac{c_g(r, \alpha)U_r + S_r}{c_g(r, \alpha)U_v + S_v} \right) dr \right]
$$

Expanding for $\alpha \ll 1$

$$
k_r = -\left[\frac{2r}{r-2M} - \frac{3r^4}{2(r-2M)^4}\alpha^2\right]\Omega
$$

For very $\frac{\text{low } \alpha}{\text{the } \text{red}}$ trajectory assumes "almost" the shape of a null trajectory

$$
k_{\mu}dx^{\mu} = \Omega \left[dv + \left(\frac{c_g(r, \alpha)U_r + S_r}{c_g(r, \alpha)U_v + S_v} \right) dr \right]
$$

Expanding for $\alpha \ll 1$

$$
k_r = -\left[\frac{2r}{r-2M} - \frac{3r^4}{2(r-2M)^4}\alpha^2\right]\Omega
$$

The same shape also for the orange ray!

The existence of the red mode outside the KH can be interpreted as the tunnel-out of the orange mode

The existence of the red mode outside the KH can be interpreted as the tunnel-out of the orange mode

$$
\Gamma = e^{-2Im S_p}
$$

$$
\Gamma = e^{-\frac{\Omega}{T_{\alpha}}} \qquad T_{\alpha} = \frac{T_{H}}{1 - 3\alpha^{2}}
$$

The existence of the red mode outside the KH can be interpreted as the tunnel-out of the orange mode

$$
\Gamma = e^{-2Im S_p}
$$

• A necessary condition for lingering is

$$
\frac{d^2v(r)}{dr^2}=0
$$

This way we get a bound

FDP, M. Herrero-Valea, S. Liberati, M. Schneider ArXiv: 2310.01472

Other approaches - I

10 After the KH, c_g is "almost" flat

$$
\bar{g}_{\mu\nu} = g_{\mu\nu} - (c_g^2 - 1)U_\mu U_\nu \qquad \bar{U}^\mu = \frac{1}{c_g}U^\mu \qquad 6
$$

The particle "seem" to come from a surface slightly inside the KH

$$
r_h(\alpha) = (2 - 6\alpha^2)M + \cdots
$$

$$
\kappa_h(\alpha) = \frac{1}{4(1 - 3\alpha^2)M}
$$

Other approaches - II

• The same result can be obtained by using the so-called "effective temperature function", which captures the exponential peeling of the rays.

$$
\kappa_{eff}(\bar{u}) = -\frac{\ddot{p}(\bar{u})}{\dot{p}(\bar{u})}
$$

$$
\left|\frac{\dot{\kappa}_{eff}(\bar{u})}{\kappa_{eff}(\bar{u})^2}\right| \ll 1
$$

Other approaches - II

 κ *eff*(*u* \bar{u})

• The same result can be obtained by using the so-called "effective temperature function", which captures the exponential peeling of the rays.

$$
) = -\frac{\ddot{p}(\bar{u})}{\dot{p}(\bar{u})}
$$

$$
\kappa_{eff}(\bar{u}) = \frac{1}{4M(1 - 3\alpha^2)} \frac{1 + 2W\left(\frac{6\alpha^2}{3\alpha^2 - 1}e^{-\frac{1}{4M(3\alpha^2 - 1)}\bar{u}}\right)}{\left[1 + W\left(\frac{6\alpha^2}{3\alpha^2 - 1}e^{-\frac{1}{4M(3\alpha^2 - 1)}\bar{u}}\right)\right]^2} \simeq \frac{1}{4M}(1 + 3\alpha^2) + \cdots
$$

Outline

- LV gravity and Black Holes' structures
- Modes' structure
- The role of KH
- Quantum state
- Discussion

Quantum state

• We have two different shapes for ψ_{Ω}^{red} : do they describe the same global state?

Adiabatic approximation

• If $\{\psi_{\Omega}^{red}\}$ are adiabatic in $[r_{UH}, r_{KH}]$, then we have compatibility between the two states

Quantum state

• So, the state is fixed by imposing the regularity at the Horizon (like in GR)

• So, the state is fixed by imposing the regularity at the Horizon (like in GR)

Then, we can "evolve" the state adiabatically until the Killing Horizon, where the low-energy population is given by *Tα*

Outline

- LV gravity and Black Holes' structures
- Modes' structure
- The role of KH
- Quantum state
- Discussion

Discussion

- We have seen that BHs in LV Gravity enjoy radiative properties. In particular, the UH radiates with the temperature fixed by *κUH*
- Low-energy particles feel the KH while propagating outwards, reprocessing the modes with non-thermal deviation.
	- These two features seem to describe the same global state, which defines a spectrum dominated by the UH at high energy and by the KH at low energies. This recovers HR in the limit $\Lambda \to \infty$.

Discussion

- We have seen that BHs in LV Gravity enjoy radiative properties. In particular, the UH radiates with the temperature fixed by *κUH*
- Low-energy particles feel the KH while propagating outwards, reprocessing the modes with non-thermal deviation.
	- These two features seem to describe the same global state, which defines a spectrum dominated by the UH at high energy and by the KH at low energies. This recovers HR in the limit $\Lambda \to \infty$.

