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Lorentz Violating gravity

• One can introduce a Stueckelberg vector field, the Aether, that parametrizes the time 
direction:

Uμ =
∂μτ

gαβ∂ατ∂βτ
S[g, τ] = −

1
16πG ∫ℳ

−g (R + cθθ2 + cσσμνσμν + cαaμaμ)

⃗x → b ⃗x, τ → b3τ

•   A “good way” to break LLI is to assume an inhomogeneous scaling behavior between 
time and space:

arXiv:0901.3775, P.Horava , 2009 



Matter Fields
• The theory allows the presence of higher (spatial) derivative operators:

Sm[ϕ] =
1
2 ∫ℳ

−g ϕ[∇μ ∇μ −
n

∑
j=2

β2j

Λ2j−2
(−Δ)j]ϕ Δ = ∇μγμν ∇ν
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Superluminal particles:

ω2 = k2 + β4
k4

Λ2
+ … + β2n

k2n

Λ2(n−1)

Different notion of causality:

J.Bhattacharyya, M.Colombo, T.P. Sotiriou, ArXiv: 1509.01558



Horizons
• Killing Horizons are no more causal boundaries! What is a Black Hole?



Horizons
• Killing Horizons are no more causal boundaries! What is a Black Hole?

If  becomes orthogonal to a compact 
surface, we have a Universal Horizon
Uμ



Universal Horizon
• In principle the UH is a global concept. If however the spacetime is stationary and 

asymptotically flat, namely

Then the definition of the Universal Horizon can be given locally

UH = {(χ ⋅ U) = 0 , (χ ⋅ a) ≠ 0}

2κUH = (χ ⋅ a) |UH

ℒχUμ = ℒχgμν = 0 (U ⋅ χ) |i0 = 1



UH in Schwarzschild

• We will consider a Schwarzschild solution of the theory:

ds2 = (1 −
2M
r )dt2 −

dr2

1 − 2M
r

− r2dS2

χμ∂μ =
∂
∂t

Uμdxμ = (1 −
M
r )dt +

M
r − 2M

dr

• The Universal Horizon is located at:

UH = {1 −
M
r

= 0} ⟹ {r = M}
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Matter fields

• Let us take a massless scalar field on a BH geometry: [∇μ ∇μ −
n

∑
j=2

β2j

Λ2j−2
(−Δ) j]ϕ = 0

{
iUμ∂μϕ = ωϕ
iSμ∂μϕ = kϕ

⟹ ω2 = k2 +
n

∑
j=2

β2j

Λ2j−2
k2j

• In the  plane we have the dispersion relation in the eikonal approximation:(t, r)

• And a conservation equation: Ω = ωN + kV N = (U ⋅ χ) V = (S ⋅ χ)



Modes’ structure

FDP, S.Liberati, M.Herrero-Valea, M.Schneider 
Phys.Rev.D 106 (2022)

• We will follow a wavepacket ψΩ0

ψΩ0
(r) = ∫

∞

0

dω

2πσ
ϕΩ(r) e− (ω − ω0)2

2σ

cg(r, α) =
dω
dk

≠
ω
k

= cp(r, α)

• For superluminal dispersion relations:



Modes’ structure

FDP, S.Liberati, M.Herrero-Valea, M.Schneider 
Phys.Rev.D 106 (2022)

•  is determined by the equationk

k4

Λ2
+( N2 − V2

N2 )k2 +
2ΩV
N2

k −
Ω2

N2
= 0



Modes’ structure

FDP, S.Liberati, M.Herrero-Valea, M.Schneider 
Phys.Rev.D 106 (2022)

•  is determined by the equationk

k4

Λ2
+( N2 − V2

N2 )k2 +
2ΩV
N2

k −
Ω2

N2
= 0

• When  changes sign, we 
have a degeneracy in the solutions

|χ |2 = N2 − V2



Turning points
• We can take the discriminant  of the polynomial and study the rootsΔ(r, α)

Δ=0

UH

Δ=0

0 2 10 50 ∞
α
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r(α)/M



Limits
• When  , we have only two real solutionsr → ∞ (N → 1)

ω = Ω > 0

kred > 0 , kblue < 0

lim
r→∞

ψΩ0
(r) = ∫

+∞

0

dΩ

2πσ
ϕΩ(r) e− (Ω − Ω0)2

2σ

• In the following we will “turn off” the 
blue (ingoing) mode



Limits
• When  , we have four real solutions, two sof and two hard onesr → rUH (N → 0)

k = − Ω

|k | → ∞



Hard solutions near UH
• When  , the hard solutions are squeezed onto a single moder → rUH (N → 0)

|k | → ∞

dω = 2
dΩ
N

ω − ω0 = 2
Ω − Ω0

N

lim
N→0+

2

2πσN
e− 4(Ω − Ω0)2

2σN2 = δ(Ω − Ω0)

lim
r→r+

UH

ψhard
Ω0

= ϕΩ0

• The propagation happens with the phase 
velocity cp = ω/k



UH emission
• Although classically forbidden, we can compute the tunneling amplitude across the 

UH

Γ = e−2Im Sp Im Sp = − Im∫
r2

r1

kr dr
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UH emission
• Although classically forbidden, we can compute the tunneling amplitude across the 

UH

Γ = e−2Im Sp Im Sp = − Im∫
r2

r1

kr dr

Γ = e− Ω
TUH TUH =

κUH

π

Thermal emission!
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Propagation of the outgoing ray
• The emission at the UH is insensitive to . However we expect something to happen 

when 
Λ
Λ → ∞



r

v − r
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Propagation of the outgoing ray
• The emission at the UH is insensitive to . However we expect something to happen 

when 
Λ
Λ → ∞

The rays for which 
 linger at the 

KH for long time 
α = Ω/Λ ≪ 1

KH

FDP, M. Herrero-Valea, S. Liberati, M. Schneider
ArXiv: 2310.01472

Prism behavior



• For very low  the red mode and the orange one assume “almost” the shape of a null 
trajectory

α

Propagation of the outgoing ray

dū = [cg(r, α)Uμ + Sμ]dxμ
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• For very low  the red trajectory assumes “almost” the shape of a null trajectoryα

Propagation of the outgoing ray

dū = [cg(r, α)Uμ + Sμ]dxμ

• In our particle interpretation ψΩ = A eiSp

Sp = − ∫ kμdxμ kμdxμ ∝ dū

kμdxμ = Ω[dv + ( c(r, α)Ur + Sr

c(r, α)Uv + Sv )dr]



Propagation of the outgoing ray

kμdxμ = Ω[dv + ( cg(r, α)Ur + Sr

cg(r, α)Uv + Sv )dr]
• Expanding for α ≪ 1

kr = − [ 2r
r − 2M

−
3r4

2(r − 2M)4
α2]Ω

• For very low  the red trajectory assumes “almost” the shape of a null trajectoryα



Propagation of the outgoing ray

kμdxμ = Ω[dv + ( cg(r, α)Ur + Sr

cg(r, α)Uv + Sv )dr]
• Expanding for α ≪ 1

kr = − [ 2r
r − 2M

−
3r4

2(r − 2M)4
α2]Ω

• The same shape also for the orange ray!

• For very low  the red trajectory assumes “almost” the shape of a null trajectoryα



Propagation of the outgoing ray
• The existence of the red mode outside the KH can be interpreted as the tunnel-out of 

the orange mode



Propagation of the outgoing ray

Γ = e−2Im Sp

• The existence of the red mode outside the KH can be interpreted as the tunnel-out of 
the orange mode

Im Sp = − Im∫
r2

r1

kr dr =
Ωπ
κKH

(1 − 3α2)

Γ = e− Ω
Tα Tα =

TH

1 − 3α2



Propagation of the outgoing ray

Γ = e−2Im Sp

• The existence of the red mode outside the KH can be interpreted as the tunnel-out of 
the orange mode

Im Sp = − Im∫
r2

r1

kr dr =
Ωπ
κKH

(1 − 3α2)

Γ = e− Ω
Tα Tα =

TH

1 − 3α2

Deviation from thermality!!



Propagation of the outgoing ray

• A necessary condition for lingering is

d2v(r)
dr2

= 0

• This way we get a bound

α < αc ≃ 0.114 r

v − r

M 2M

α = 10−5

α = 10−4

α = 10−3

α = 10−2

α = 10−1

α = 1

FDP, M. Herrero-Valea, S. Liberati, M. Schneider
ArXiv: 2310.01472



Other approaches - I
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c(r,α)• After the KH,  is “almost” flatcg

ḡμν = gμν − (c2
g − 1)UμUν Ūμ =

1
cg

Uμ

• The particle “seem” to come from a 
surface slightly inside the KH

rh(α) = (2 − 6α2)M + ⋯

κh(α) =
1

4(1 − 3α2)M



Other approaches - II
• The same result can be obtained by using the so-called “effective temperature function”, 

which captures the exponential peeling of the rays.

κeff(ū) = −
··p(ū)
·p(ū)

·κeff(ū)
κeff(ū)2

≪ 1



Other approaches - II
• The same result can be obtained by using the so-called “effective temperature function”, 

which captures the exponential peeling of the rays.

κeff(ū) = −
··p(ū)
·p(ū)

κeff(ū) =
1

4M(1 − 3α2)

1 + 2W( 6α2

3α2 − 1
e− 1

4M(3α2 − 1)
ū)

[1 + W( 6α2

3α2 − 1
e− 1

4M(3α2 − 1)
ū)]2

≃
1

4M
(1 + 3α2) + ⋯
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Quantum state
• We have two different shapes for : do they describe the same global state?ψred

Ω

|ψUH⟩

|ψα⟩

Fixed by TUH

Fixed by Tα



Adiabatic approximation
• If  are adiabatic in , then we have compatibility between the two states{ψred

Ω } [rUH, rKH]

α



Quantum state

• So, the state is fixed by imposing the 
regularity at the Horizon (like in GR)



Quantum state

• So, the state is fixed by imposing the 
regularity at the Horizon (like in GR)

• Then, we can “evolve” the state 
adiabatically until the Killing Horizon, 

where the low-energy population is given by 
Tα
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Discussion

• We have seen that BHs in LV Gravity enjoy radiative properties. In particular, the UH 
radiates with the temperature fixed by 

• Low-energy particles feel the KH while propagating outwards, reprocessing the modes 
with non-thermal deviation.

• These two features seem to describe the same global state, which defines a spectrum 
dominated by the UH at high energy and by the KH at low energies. This recovers HR 

in the limit .

κUH

Λ → ∞



Discussion

• We have seen that BHs in LV Gravity enjoy radiative properties. In particular, the UH 
radiates with the temperature fixed by 

• Low-energy particles feel the KH while propagating outwards, reprocessing the modes 
with non-thermal deviation.

• These two features seem to describe the same global state, which defines a spectrum 
dominated by the UH at high energy and by the KH at low energies. This recovers HR 

in the limit .

κUH

Λ → ∞

Thank you!


