Hawking radiation in Lorentz violating gravity

Francesco Del Porro

In collaboration with: S. Liberati, M. Herrero-Valea and M. Schneider

QUAGRAP meeting - April 18-19, 2024, Napoli

ÍNFŃ

Based on: JHEP 12 (2023) 094 (ArXiv:2310.01472)

- LV gravity and Black Holes' structures
- Modes' structure
- The role of KH
- Quantum state
- Discussion

• LV gravity and Black Holes' structures

- Modes' structure
- The role of KH
- Quantum state
- Discussion

Lorentz Violating gravity

- - $\vec{x} \rightarrow b\vec{x}$

$$U_{\mu} = \frac{\partial_{\mu} \tau}{\sqrt{g^{\alpha\beta} \partial_{\alpha} \tau \partial_{\beta} \tau}} \qquad S[g, \tau] =$$

A "good way" to break LLI is to assume an inhomogeneous scaling behavior between time and space: arXiv:0901.3775, P.Horava, 2009

$$\dot{z}, \quad \tau \to b^3 \tau$$

One can introduce a Stueckelberg vector field, the Aether, that parametrizes the time direction:

$$-\frac{1}{16\pi G} \int_{\mathcal{M}} \sqrt{-g} \left(R + c_{\theta}\theta^{2} + c_{\sigma}\sigma_{\mu\nu}\sigma^{\mu\nu} + c_{\alpha}a_{\mu}a\right)$$

The theory allows the presence of higher (spatial) derivative operators:

$$S_m[\phi] = \frac{1}{2} \int_{\mathscr{M}} \sqrt{-g} \,\phi \left[\nabla_\mu \nabla^\mu - \sum_{j=2}^n \frac{\beta_{2j}}{\Lambda^{2j-2}} (-\Delta)^j \right] \phi \qquad \Delta = \nabla_\mu \gamma^{\mu\nu} \nabla_\nu$$

Matter Fields

Matter Fields

The theory allows the presence of higher (spatial) derivative operators:

$$S_m[\phi] = \frac{1}{2} \int_{\mathscr{M}} \sqrt{-g} \, \phi \left[\nabla_\mu \nabla^\mu - \sum_{j=2}^n \frac{\beta_{2j}}{\Lambda^{2j-2}} (-\Delta)^j \right] \phi \qquad \Delta = \nabla_\mu \gamma^{\mu\nu} \nabla_\mu$$

Superluminal particles:

$$\omega^{2} = k^{2} + \beta_{4} \frac{k^{4}}{\Lambda^{2}} + \dots + \beta_{2n} \frac{k^{2n}}{\Lambda^{2(n-1)}}$$

Different notion of causality:

J.Bhattacharyya, M.Colombo, T.P. Sotiriou, ArXiv: 1509.01558

Killing Horizons are no more causal boundaries! What is a Black Hole?

Killing Horizons are no more causal boundaries! What is a Black Hole?

If U_{μ} becomes orthogonal to a compact surface, we have a <u>Universal Horizon</u>

Universal Horizon

 $\mathscr{L}_{\chi}U_{\mu} = \mathscr{L}_{\chi}g_{\mu\nu} = 0$

 $UH = \{(\chi \cdot U)\}$

In principle the UH is a global concept. If however the spacetime is stationary and asymptotically flat, namely

$$(U \cdot \chi)_{i^0} = 1$$

Then the definition of the Universal Horizon can be given locally

$$(\chi \cdot a) \neq 0 \}$$

$$2\kappa_{UH} = (\chi \cdot a)_{UH}$$

UH in Schwarzschild

We will consider a Schwarzschild solution of the theory:

$$ds^{2} = \left(1 - \frac{2M}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{2M}{r}} - r^{2}dS_{2}$$

The Universal Horizon is located at:

$$UH = \left\{ 1 - \frac{N}{r} \right\}$$

$$U_{\mu}dx^{\mu} = \left(1 - \frac{M}{r}\right)dt + \frac{M}{r - 2M}dr$$
$$\chi^{\mu}\partial_{\mu} = \frac{\partial}{\partial t}$$

 $\frac{M}{r} = 0 \left\{ m = M \right\}$

Outline

• LV gravity and Black Holes' structures

- Modes' structure
- The role of KH
- Quantum state
- Discussion

Matter fields

In the (t, r) plane we have the dispersion relation in the eikonal approximation:

$$\begin{cases} iU^{\mu}\partial_{\mu}\phi = \omega\phi \\ iS^{\mu}\partial_{\mu}\phi = k\phi \end{cases}$$

And a conservation equation: $\Omega =$

Let us take a massless scalar field on a BH geometry: $\left[\nabla_{\mu}\nabla^{\mu} - \sum_{i=2}^{n} \frac{\beta_{2j}}{\Lambda^{2j-2}} (-\Delta)^{j}\right] \phi = 0$

$$\Rightarrow \omega^2 = k^2 + \sum_{j=2}^n \frac{\beta_{2j}}{\Lambda^{2j-2}} k^{2j}$$

$$\omega N + kV \qquad N = (U \cdot \chi) \qquad V = (S \cdot \chi)$$

We will follow a wavepacket ψ_{Ω_0}

$$\psi_{\Omega_0}(r) = \int_0^\infty \frac{d\omega}{\sqrt{2\pi\sigma}} \phi_{\Omega}(r) e^{-\frac{(\omega-\omega_0)^2}{2\sigma}}$$

For superluminal dispersion relations:

$$c_g(r, \alpha) = \frac{d\omega}{dk} \neq \frac{\omega}{k} = c_p(r, \alpha)$$

k is determined by the equation

$$\frac{k^4}{\Lambda^2} + \left(\frac{N^2 - V^2}{N^2}\right)k^2 + \frac{2\Omega V}{N^2}k - \frac{\Omega^2}{N^2} = 0$$

k is determined by the equation

$$\frac{k^4}{\Lambda^2} + \left(\frac{N^2 - V^2}{N^2}\right)k^2 + \frac{2\Omega V}{N^2}k - \frac{\Omega^2}{N^2} = 0$$

• When $\chi^2 = N^2 - V^2$ changes sign, we have a degeneracy in the solutions

Turning points

We can take the discriminant $\Delta(r, \alpha)$ of the polynomial and study the roots

When $r \to \infty$ ($N \to 1$), we have only two real solutions $\omega = \Omega > 0$ $k_{red} > 0 \,, \qquad k_{blue} < 0$ $\lim_{r \to \infty} \psi_{\Omega_0}(r) = \int_0^{+\infty} \frac{d\Omega}{\sqrt{2\pi\sigma}} \phi_{\Omega}(r) e^{-\frac{(\Omega - \Omega_0)^2}{2\sigma}}$

In the following we will "turn off" the blue (ingoing) mode

Limits

When $r \to r_{UH}$ ($N \to 0$), we have four real solutions, two *soft* and two *hard* ones

Hard solutions near UH

When $r \rightarrow r_{UH} (N \rightarrow 0)$, the hard solutions are squeezed onto a single mode

$$d\omega = 2\frac{d\Omega}{N} \qquad \omega - \omega_0 = 2\frac{\Omega - \Omega_0}{N}$$

$$\lim_{N \to 0^+} \frac{2}{\sqrt{2\pi\sigma}N} e^{-\frac{4(\Omega - \Omega_0)^2}{2\sigma N^2}} = \delta(\Omega - \Omega_0)$$

$$\lim_{r \to r_{UH}^+} \psi_{\Omega_0}^{hard} = \phi_{\Omega_0}$$

• The propagation happens with the phase velocity $c_p = \omega/k$

UH emission

Although classically forbidden, we can compute the tunneling amplitude across the UH

$$\Gamma = e^{-2ImS_p} \qquad ImS_p = -Im \int_{r_1}^{r_2} k_r dr$$

UH emission

Although classically forbidden, we can compute the tunneling amplitude across the UH

UH emission

Although classically forbidden, we can compute the tunneling amplitude across the UH

$$\Gamma = e^{-2ImS_p} \qquad ImS_p = -Im\int_{r_1}^{r_2} k_r dr$$

Outline

- LV gravity and Black Holes' structures
- Modes' structure
- The role of KH
- Quantum state
- Discussion

The emission at the UH is insensitive to Λ . However we expect something to happen when $\Lambda \to \infty$

The emission at the UH is insensitive to Λ . However we expect something to happen when $\Lambda \to \infty$

The rays for which $\underline{\alpha} = \Omega / \Lambda \ll 1$ linger at the KH for long time

FDP, M. Herrero-Valea, S. Liberati, M. Schneider ArXiv: 2310.01472

For very low α the red mode and the orange one assume "almost" the shape of a null trajectory

 $d\bar{u} = [c_g(r,\alpha)U_\mu + S_\mu]dx^\mu$

For very low α the red trajectory assumes "almost" the shape of a null trajectory

$$d\bar{u} = [c_g(r,\alpha)U_\mu + S_\mu]dx^\mu$$

In our particle interpretation $\psi_{\Omega} = A e^{iS_p}$

$$S_{p} = -\int k_{\mu}dx^{\mu} \qquad k_{\mu}dx^{\mu} \propto d\bar{u}$$
$$k_{\mu}dx^{\mu} = \Omega \left[dv + \left(\frac{c(r,\alpha)U_{r} + S_{r}}{c(r,\alpha)U_{v} + S_{v}} \right) dr \right]$$

For very low α the red trajectory assumes "almost" the shape of a null trajectory

$$k_{\mu}dx^{\mu} = \Omega \left[dv + \left(\frac{c_g(r, \alpha)U_r + S_r}{c_g(r, \alpha)U_v + S_v} \right) dr \right]$$

Expanding for $\alpha \ll 1$

$$k_r = -\left[\frac{2r}{r-2M} - \frac{3r^4}{2(r-2M)^4}\alpha^2\right]\Omega$$

For very low α the red trajectory assumes "almost" the shape of a null trajectory

$$k_{\mu}dx^{\mu} = \Omega \left[dv + \left(\frac{c_g(r,\alpha)U_r + S_r}{c_g(r,\alpha)U_v + S_v} \right) dr \right]$$

Expanding for $\alpha \ll 1$

$$k_r = -\left[\frac{2r}{r-2M} - \frac{3r^4}{2(r-2M)^4}\alpha^2\right]\Omega$$

• The same shape also for the orange ray!

The existence of the red mode outside the KH can be interpreted as the tunnel-out of the orange mode

The existence of the red mode outside the KH can be interpreted as the tunnel-out of the orange mode

$$\Gamma = e^{-2ImS_p}$$

$$\Gamma = e^{-\frac{\Omega}{T_{\alpha}}} \qquad T_{\alpha} = \frac{T_{H}}{1 - 3\alpha^{2}}$$

The existence of the red mode outside the KH can be interpreted as the tunnel-out of the orange mode

$$\Gamma = e^{-2ImS_p}$$

• A necessary condition for lingering is

$$\frac{d^2 v(r)}{dr^2} = 0$$

This way we get a bound

 $\alpha < \alpha_c \simeq 0.114$

FDP, M. Herrero-Valea, S. Liberati, M. Schneider ArXiv: 2310.01472

After the KH, c_g is "almost" flat

$$\bar{g}_{\mu\nu} = g_{\mu\nu} - (c_g^2 - 1)U_{\mu}U_{\nu} \qquad \bar{U}^{\mu} = \frac{1}{c_g}U^{\mu} \qquad e^{-\frac{1}{c_g}}U^{\mu} \qquad e^{-\frac{1}{c_g}$$

The particle "seem" to come from a surface slightly inside the KH

$$r_h(\alpha) = (2 - 6\alpha^2)M + \cdots$$

$$\kappa_h(\alpha) = \frac{1}{4(1-3\alpha^2)M}$$

Other approaches - I

Other approaches - II

$$\kappa_{eff}(\bar{u}) = -\frac{\ddot{p}(\bar{u})}{\dot{p}(\bar{u})}$$

$$\frac{\dot{\kappa}_{eff}(\bar{u})}{\kappa_{eff}(\bar{u})^2} \ll 1$$

• The same result can be obtained by using the so-called "effective temperature function", which captures the exponential peeling of the rays.

Other approaches - II

 $\kappa_{eff}(\bar{u})$

$$\kappa_{eff}(\bar{u}) = \frac{1}{4M(1 - 3\alpha^2)} \frac{1 + 2W(1 - 3\alpha^2)}{\left[1 + W(\frac{1}{3})\right]}$$

The same result can be obtained by using the so-called "effective temperature function", which captures the exponential peeling of the rays.

$$\dot{p}(\bar{u}) = -\frac{\ddot{p}(\bar{u})}{\dot{p}(\bar{u})}$$

Outline

- LV gravity and Black Holes' structures
- Modes' structure
- The role of KH
- Quantum state
- Discussion

Quantum state

We have two different shapes for ψ_{Ω}^{red} : do they describe the same global state?

Adiabatic approximation

If $\{\psi_{\Omega}^{red}\}$ are adiabatic in $[r_{UH}, r_{KH}]$, then we have compatibility between the two states

 \bullet

So, the state is fixed by imposing the regularity at the Horizon (like in GR)

Quantum state

So, the state is fixed by imposing the regularity at the Horizon (like in GR)

Then, we can "evolve" the state adiabatically until the Killing Horizon, where the low-energy population is given by T_{α}

Outline

- LV gravity and Black Holes' structures
- Modes' structure
- The role of KH
- Quantum state
- Discussion

Discussion

- We have seen that BHs in LV Gravity enjoy radiative properties. In particular, the UH radiates with the temperature fixed by κ_{UH}
- Low-energy particles feel the KH while propagating outwards, reprocessing the modes with non-thermal deviation.
 - These two features seem to describe the same global state, which defines a spectrum dominated by the UH at high energy and by the KH at low energies. This recovers HR in the limit $\Lambda \to \infty$.

Discussion

- We have seen that BHs in LV Gravity enjoy radiative properties. In particular, the UH radiates with the temperature fixed by κ_{UH}
- Low-energy particles feel the KH while propagating outwards, reprocessing the modes with non-thermal deviation.
 - These two features seem to describe the same global state, which defines a spectrum dominated by the UH at high energy and by the KH at low energies. This recovers HR in the limit $\Lambda \to \infty$.

