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Black holes (BHs) are the most well-accepted candidates for the dark and 

compact objects observed 

Observational fits, such as: 

       Long-baseline interferometry (EHT) 

       Gravitational-wave detection (LIGO, VIRGO, KAGRA) 

Theoretical arguments 

       Stability limits of neutron stars 

       Absence of regular stars beyond certain compactness  CR =
2M
R

Introduction



Buchdahl’s theorem establishes that, if:

Tμ
ν = diag (−ρ, pR, pT, pT)

Consider a spherically symmetric star described by 

1. The interior metric matches the Schwarzschild solution at the surface 

2. The energy density is monotonously decreasing:  

3. Pressures are not highly anisotropic: 

ρ ≥ 0, dρ/dr ≤ 0

pT ≤ pR

Regular stars have a maximum compactness limit [1]

Buchdahl’s limit
[1] Buchdahl (1959)



In the particular case of isotropic stars

With the equation of state

ρ(r) ≡ ρ = const .

CR = 8/9

The hypotheses behind the theorem are saturated and we obtain the bound

Tμ
ν = diag (−ρ, p, p, p)

In general relativity, pressure gravitates and, beyond certain threshold, it contributes 

towards collapse instead of preventing it. 

Buchdahl’s limit



The physical vacuum of quantum fields in a stellar spacetime is not the GR 

vacuum, but the Boulware vacuum 

This quantum vacuum is “less empty”, acting as an additional source of stress-

energy 

A star approaching the Buchdahl limit will polarize the Boulware vacuum 

appreciably 

Do we find a compactness limit when the vacuum backreacts?

Buchdahl’s limit



Semiclassical gravity

Theory that takes into account the backreaction of zero-point 

energies of quantum fields on a classical spacetime 

• The RSET is a function of the metric, field modes, and their derivatives 

• It encodes both vacuum polarization and particle creation effects 

• Both SETs couple through the spacetime geometry only

We treat this 

theory as a 

modified gravity 
Gμ

ν = 8π (Tμ
ν + ℏ⟨ ̂Tμ

ν⟩)



We want to solve the backreaction problem in spherical symmetry

ds2 = − f(r)dt2 + h(r)dr2 + r2dΩ2

Anderson, Hiscock and Samuel [2] obtained this RSET via point-splitting 

regularisation ⟨ ̂Tμ
ν⟩ren = ⟨ ̂Tμ

ν⟩AHS + ⟨ ̂Tμ
ν⟩num

[2] Anderson, Hiscock, Samuel (1995)

h(r) = [1 − C(r)]−1 = [1 −
2m(r)

r ]
−1

Two covariantly conserved tensors: 

Analytical. Depends on metric and higher-order 

derivatives. Contains a renormalization ambiguity

Numerical. Depends on integrals over the frequency 

and multipole number of field modes

⟨ ̂Tμ
ν⟩num

⟨ ̂Tμ
ν⟩AHS

with

Semiclassical gravity



The AHS-RSET is a well-motivated approximation since it captures the 

properties of the Boulware state 

Gμ
ν = 8π (Tμ

ν + ℏ⟨ ̂Tμ
ν⟩AHS)

A fixed-background (no backreaction) computation of the AHS-RSET 

is illustrative

ds2 = −
1
4 (3 1 − CR − 1 − r2CR/R2)

2

dt2 + (1 − r2CR/R2)−1 dr2 + r2dΩ2

Consider the metric of the constant-density star:

Semiclassical gravity



Now, take a star with CR =
8
9

− ϵ, ϵ → 0+

Evaluating the AHS-RSET at r = 0

⟨ ̂ρ⟩ = − ⟨ ̂Tt
t⟩AHS

r=0
∝

l2
P

R4 (ξ −
1
6 )

2 log ϵ
ϵ2

+ 𝒪 (ϵ−2)

⟨ ̂Tr
r⟩AHS

r=0
= ⟨ ̂Tθ

θ⟩
AHS

r=0
=

1
3

⟨ ̂Tt
t⟩AHS

r=0

 for                                     ⟨ ̂ρ⟩ ≃ − ρ ϵ ≃ 𝒪 [( lP
R ) log ( R

lP )]
Potential violation of the Buchdahl theorem by vacuum polarization effects!

Semiclassical gravity



The higher-derivative nature of the AHS-RSET introduces problems

• We require additional initial conditions to specify a solution 

• Some solutions might be spurious or unphysical 

Reduction of order

Following Simon and Parker [3] we apply a reduction of order to the AHS-RSET

Reduction of order is only valid when semiclassical effects are small. We use it 

outside its regime of validity following a modified gravity logic 

[3] Simon, Parker (1993)



h(1 − h) − rh′ 

h2r2
= − 8πρ + 𝒪(ℏ)

rf′ + f − fh
fhr2

= 8πp + 𝒪(ℏ)

Solving for  and , and differentiating, we obtain the relationsh′ f′ 

and replace them in the AHS-RSET and obtain the angular components 

through conservation

∇μ⟨ ̂Tμ
r⟩ = ∂r⟨ ̂Tr

r⟩ +
2
r (⟨ ̂Tr

r⟩ − ⟨ ̂Tθ
θ⟩) +

f′ 

2f (⟨ ̂Tr
r⟩ − ⟨ ̂Tt

t⟩) = 0

 equation:(tt)  equation:(rr)

h(n) = ℋn (h, f, ρ, p) f (n) = ℱn (h, f, ρ, p)

Reduction of order



h(1 − h) − rh′ 

h2r2
= − 8πρ + ℏ⟨ ̂Tt

t⟩OR(h, f, ρ, p)
rf′ + f − fh

fhr2
= 8πp + ℏ⟨ ̂Tr

r⟩OR(h, f, ρ, p)

p′ +
f′ 

2f (ρ + p) = 0

ρ = const.

2. Integrate the stellar 

equations as a boundary-

value problem varying  

and  

CR

ρ

Semiclassical stellar equations:

1. Integrate the vacuum equations 

from an asymptotically flat region 

inwards

3. Search for regular 

solutions 

Reduction of order



Stellar solutions: Properties
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As  is increased, a negative mass interior emergesCR

Misner-Sharp mass and classical pressure of semiclassical stars surpassing the Buchdahl limit

CR = {0.89,0.91,0.93,0.96,0.98}

We find regular stellar solutions that surpass the Buchdahl limit



CR = {0.89,0.91,0.93,0.96,0.98}
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The RSET has 

 and positive 

pressures at 

⟨ ̂ρ⟩ < 0
r = 0

Stellar solutions: Properties

Ricci scalar is 

negative and finite

Order-Reduced RSET components
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Mass-to-Radius diagram of semiclassical stars

• Sub-Buchdahl: perturbatively 

corrected constant-density stars 

• Buchdahl: negative energies build 

up near the center, supporting the 

structure 

• Super-Buchdahl: stars with 

negative mass interiors that can 

approach the BH compactness

Three regimes:

Stellar solutions: Properties



The crossing time for null rays

τph = 2∫
rph

0
(h/f)1/2 dr

stays finite across the Buchdahl 

threshold

Comparison of the crossing time of classical and semiclassical 

solutions

Stellar solutions: Properties

With a large separation of scales:
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Stellar solutions: Properties

Consider the axial perturbations of an  test field [4] s = 2

Quasinormal modes correspond to solutions satisfying the boundary conditions

We obtain the frequencies                        of the fundamental  mode through the direct 

integration method [5]

l = 2

[5] Chandrasekhar, Detweiler (1975)

Vs = [l (l + 1) − 2]f
r2

+
2f

r2h
−

hf′ − fh′ 

2rh2

[4] Medved, Martin, Visser (2004)

d2ψs

dr2
*

+ (ω2 − Vs) ψs = 0

ω = ωR + iωI

ψs ≃ eiωr*, r* → ∞

ψs ≃ rl, r → 0

CR = 0.98
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Stellar solutions: Properties

Comparison of QNM frequencies: classical and semiclassical solutions

Beyond the Buchdahl limit, the fundamental QNM frequencies remain (almost) constant.

The imaginary part is small, indicating the presence of long-lived modes.

Numerical evolution of test fields displays echoes when compactness is large
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Stellar solutions: Properties

Now we perform a time domain analysis for  modesl = 2

∂2ψ
∂t2

−
∂2ψ
∂r2

*
+ Vψ = 0

CR=0.78
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Taking as initial condition for the field a Gaussian pulse

ψ (r,0) = ψ0 exp − (r* − rc
*)2

8M2
,

∂ψ(r,0)
∂t

= 0

Echoes are produced as the star goes ultracompact, but large 

scale separation will produce a huge time delay



Stellar solutions: Properties

Is there no hope of semiclassical stars producing observable echoes?

Metrics of super-critical semiclassical stars with  and . These are obtained by increasing C(R) = 0.99 M = 1 ρ

The space of solutions allows for super-critical stars with shorter crossing times. 

Their exterior geometry is identical



Stellar solutions: Properties

QNM frequencies increase as we go super-critical 

Crossing time and quasinormal mode frequencies of super-critical semiclassical stars with C(R) = 0.99

Changes in the crossing time have a clear impact on QNMs
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We observe analogous changes in the echo waveforms in time domain



Future directions

Backreaction from vacuum polarization 

allows to surpass the Buchahl limit

The semiclassical star model serves as a well-motivated  

alternative to BHs

Stability

Exact RSETs
Formation 

mechanisms

Axisymmetry?

Numerical computation of the 

RSET in stellar interiors

Other RSET approximations (Polyakov) 

predict semiclassical stars

Deriving effective EoSs that 

reproduce the physics of 

semiclassical stars

Role of the inner horizon 

during gravitational collapse?

In the future…

Lifetime of trapped regions?


