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it from the cracks that Light gets tin... Anthem-Leonard Cohen

A new dawn for testing General Relativity

Albeit we “use” GR everyday (e.g. GPS) still it has some tantalising

features and it has resisted so far any attempt to be quantised...

* Singularities *  The cosmological constant problem

* Critical phenomena in gravitational collapse + Faster than light and Time travel solutions

* Horizon thermodynamics
*  AdS/CFT duality, holographic behaviour

* Spacetime thermodynamics: Einstein

el s odiah o= Dlsiele. *  Information Problem in BH Physics

There are a ubiquitous objects that are associated to most of these odd GR features:
Black Holes
Understanding them “in nature” would be key to test our understanding of gravity.
Unfortunately so fare very sparse knowledge was allowed by observations...
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it from the cracks that light gets tn... Anthem-Leonard Cohen

BLACK HOLES:
THE ROSETTA STONE OF GRAVITY

“The black holes of nature are the most perfect macroscopic objects there are in the universe:

the only elements in their.construction are our.concepts ofispace and time.”
StubrahmanyaniEhandrasekhar:

7
0’0

ALBEIT WE ARE NOWADAYS FAMILIAR WITH THE CONCEPT OF
Br.Aack HOLES THEIR ACCEPTANCE AS A PHYSICAL SOLUTION
OF GENERAL RELATIVITY HAS BEEN FAR FROM OBVIOUS.

< KVEN ONCE WAS UNDERSTOOD THE NATURE OF THE EVENT
HORIZON, BH ARE STILL. CHARACTERISED BY “HARD TO
DIGEST  STRUCTURES

% SINGULARITIES: INFINITE CURVATURE

% (CAUCHY HORIZONS (ASSOCIATED TO TIMELIKE
SINGULARITIES AND TIME MACHINES): END OF
PREDICTABILITY

outer ergosphere inner ergosphere ring singularity inner horizon outer horizon

QG is supposed to “cure” these features:
If it does so just in a hidden QG core of Planck scale then BH will be exactly as in GR.
But what if the “cure” requires long range (in time and /or space) effects?
Then maybe we could test QG using BH... could we?



Singularity

A singularity is where General relativity is no more predictive: we cannot describe spacetime there —> missing points.

Penrose’s theorem is what makes very confident that singularities must form inside black holes generically

Penrose’s singularity theorem
Assumptions

+ The theory of gravity is GR

- singulaijity
>

+ The gravitational collapse becomes enough strong to have convergent light cones (trapped region)

E time
+ Matter gravitates in the standard way (no exotic/quantum matter: if p=w@ w>-1) %
¢ 3
3 B
Implication
Once a trapped region forms the collapse would be unstoppable and has to lead to a singularity v = const.

Avoidance of this conclusion requires at least one of the following

+ The weak energy condition is violated.

+ The Einstein field equations do not hold.

matter

+ Lorentzian geometry does not provide an adequate description of spacetime inside BHs.

+ Global hyperbolicity (Cauchy evolution) breaks down.

We shall be ready to give up the first two and hold the last two...



Focussing on the focussing point

Let’s assume that QG produces a space-time which is regular and entirely predictable in the sense of a Cauchy problem.

No singularities both in the sense of incomplete geodesic as well as curvature singularities (metric is at least C2).

Penrose’ theorem works by proving first that in a collapse a
focussing point for outgoing light rays is reached and then
by showing that this point (or sets of points) cannot be part
of the spacetime. If QG removes such a focussing point
what can happen? We can have

Defocusing point at a finite affine distance, Aper=A¢; LA
Defocusing point at an infinite affine distance, Apgr=c0; ! =
Focusing point at infinity, Aprr=0; e
| >,

still singular at finite affine parameter for ingoing congruence

: 1 6A
o0 = ——
null SA SA

3 gﬁ
Apart from the above behaviour of the outgoing light rays

we can catalogue all the possible cases by considering the radius R at which defocussing
happens and the behaviour of the ingoing light rays there.
We then get only

4 viable classes:
1. (20, Ro, 8% < 0) 3. (9Rs, 8% < 0)

2. (A9, R0, 8% = 0) 4. (0, Ry, 8% > 0)



Class 1: Evanescent horizons

+ The expansion relative to the outgoing null vector vanish and changes sign.

+ The expansion of the intersecting ingoing radial null geodesics remains negative.

X/
%

We recover the geometry of an evanescent
regular black hole.

+ The geometry possesses an outer and an inner
horizon that merge in finite time.

« This situation corresponds to a regular BH
with no singularity

+ Or to a bounce from a BH to a White Hole (the
time reversal of a black hole)

Note: one can think of Inner Horizons as White
Horizons which have been turned Inside Out

Figure by courtesy of R. Carballo-Rubio



Class 2: One way hidden wormholes

- The expansion relative to the outgoing null rays vanish and changes sign.

» The expansion of the intersecting ingoing radial null rays changes sign as well.

» The geometry possesses a minimum radius
throat that resembles the one of a wormhole;

» The throat 1s inside a trapping horizon and can be
traversed only in one direction.

» Problematic creation from gravitational collapse
as topology change 1s incompatible with global
hyperbolicity. However, if one gives up (at least
in two points) metric analyticity requirement then
possible to conceive a geometry with minimum _
finite radius locally. i




Asymptotic resolutions: Gases 3,4

* These are (idealised?) cases in which the defocussing point is
pushed at infinity.

Everlasting horizons Asymptotic hidden wormholes

These are allowed but rather unphysical singularity resolutions.
We shall not deal with these asymptotic cases further...



First “take-home™ message

The analysis of the singularity
resolutions tells us that
substantially, once a trapping
horizon forms, there are two
classes of singularity free solutions
(local in space and time) available:

Simply connected topology:
Regular black holes (and
bounces) with inner horizons.

Non-simply connected
topology: Hidden Wormholes
(wormholes shielded by a
trapping horizons) OH

Regular BH Hidden WH

Figures by courtesy of R. Carballo-Rubio



R.~Carballo-Rubio, F.~Di Filippo, S.~Liberati and M.~Visser,
JHEP 08 (2023), 046

Limiting cases

In both these cases one can ask what happens if Ry — r,,:.,, and “overtakes it”

The answer is simple one gets two corresponding new classes of objects
Horizonless Quasi-BH

Naked wormholes

Quasi-BH

Let us define a static and spherically symmetric quasi-
black hole as a spacetime satisfying:
(i) the geometry is Schwarzschild above a given radius
R that is defined to be the radius of the object,
(ii) the geometry for r <R is not Schwarzschild, and
(iii) there are no event or trapping horizons.

Naked Wormbhole

Easy to engineer WH-mickers by “gluing” two copies of
Schw. or Kerr spacetime cut just above the horizon but in

general these are not correspondent to regularised solutions.




Class 1: Examples

2
et (1 < 2m(7“)> a2 i ( d?2“ ( )) + 72 [d6? + sin2 0 dg?] . Model m(r)
4 1 - =2 r3
Bardeen [44] MW
r3
m(r)=Misner-Sharp Mass Hayward [85] M ooonrm

Dymnikova [46] M [1 — eXp(Z—;)}

Fan-Wang [47] M 2

o Requirements for the mass function
m(r) = M asr — o and m(r) = O(r3) as r — 0 (at least)
e Asymptotic flatness+Regularity at the core+Outer Horizon imply also Inner Horizon.
The position of the inner and outer horizons and their surface gravity depend on m(r)
e Within GR, RBHs are non-vacuum solutions, the effective stress-energy tensor can be
read off from the Einstein tensor; several interpretations in terms of non-linear
electrodynamics. In general Violations of energy conditions.
. Even non-rotating RBH have inner horizons
. Rotating regular black holes (Kerr-like) can be constructed e.g. using
generalised Janis-Newman procedure (albeit care is required...)




R.~Carballo-Rubio, F.~Di Filippo, S.~Liberati and M.~Visser,
JHEP 08 (2023), 046

Class 1: Regular-BH limit

Mr3
r3+202M°
* The effective stress energy tensor takes the form associated with an anisotropic perfect fluid

3¢% (m(r)\’ 3¢2 P =2M (m(H\® 2% -20°M
0=5(57) =ro w0 () - T

+ 2m(r) = r has 2 roots for M/ > 3\/§ /4 a degenerate/double root for M/ = 3\/5 (4 (at = \/5 ¢ ) and no roots for M/ < 3\/5 /4

. Let us take Hayward RBH for concreteness: m(r) =

¢(r) = 0.

3 p(r).

Assuming M/¢ > 3\/§ /4 and M > ¢ one has a RBH a
ultra compact object with 4 “zones”

Atmosphere

 The (approximately isotropic) dS core [r ~ £ < 2M]:
PO = =p&)=o— [l =0 (¢/M)] = = p(®).
« The (mildly anisotropic) crust [r ~ L, = \3/ 26°M]: pa

£ iy A £ A #dS Core
L) = = pLy) =—= [1+0(¢/M)|,  p(L,) = o 1+ 0(¢/M))].
 The (grossly anisotropic) atmosphere [r ~ 2M]:

4

p(M) = —pM) = A, (%) 1+ 06 (£2M?)],  pM)=2pM)|1 + 0O (£*IM?)].
o The (approximately vacuum) asymptotic region [r ~ R > M]:

il T
p(R) = —pr(R)=A0<2M> ( = ) |1+ 6 (£*MIR%)], pR) =2p(R)[1 + O (£*MIR?)].

s
Ergoregion

r
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Class 1 Qua81 BH [imit

Mr
. Let us take Hayward RBH for concreteness: m(r) = > T
: 7 U s e L

+ The effective stress energy tensor takes the form associated with an anisotropic perfect fluid

322 (m(r)\* - = 372 B 2M (m()\® 23 = 20°M
= r), ) = =
2 L Pr 3+ 202M 3+ 202M

+ 2m(r) = r has 2 roots for M/ > 3\/§ /4 a degenerate/double root for M/¢ = 3\/5 /4 and no roots for M/ < 3\/5 /4

i) = p(r).

r3 r3

Assuming M/ < 3\/§ /4. In this case, the different scales £ and M coalesce, the
horizons disappear, with the dS-like core growing in size and the crust and
atmosphere shrinking.

Vacuum

quasi-BH region

? unstable LR /| compact-star
[ : Isotropic
25 - region ds Coré

30
a8 Y :
2 15} S ]
[ o ¥
10k RBH region , ]
S | stable LR e Atmosphere
05" i i : ]
[ Inner Horizon _ . --
QO e e . .

e e e Similar structure to
oM gravastars



Problem: Mass inflation instability

Problem: The inner horizon is
generically classically unstable

mu(rov) | _ ) y el

Without fine tuning there is an instability at inner horizon (mass

inflation) in QG time scale, while evaporation time is generically
infinite.

Note also that possible cosmological constant relevant only after a

time v ~ 1/\/X.

Similarly, ingoing Hawking flux can become relevant (see
Buonanno et al. 2022) but too late for astrophysical black holes

R.Carballo-Rubio, EDi Filippo, SL, C.Pacilio and M.Visser,
JHEP 1807, 023 (2018). [arXiv:1805.02675 [gr-qcll.
JHEP 05 (2021) 132 ¢ e-Print: 2101.05006 [gr-qc]
See also: [arXiv:2212.07458 [gr-qcll.

This result i5'can be extended to continuous incoming fluxes and to

dynamical geometries (it is not just linked to Cauchy horizons).
Even the GR Kerr one...

R.Carballo-Rubio, E.Di Filippo, SL, C.Pacilio and M.Visser e-Print: 2402.14913.

This seems to suggest that a RBH regularisation with an inner horizon

cannot be the end point of the collapse... can we avoid mass inflation?


https://arxiv.org/abs/2101.05006

Stable regular black holes?

Basic idea: a possible stable endpoint is a Regular BH with zero surface gravity at the IH
but non zero one at the outer horizon given that mass inflation is exponential in x_
k-=10"0 —Kk_=0

/7
0’0

R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio and M. Visser, "Regular black
holes without mass inflation instability,”* JHEP 09 (2022), 118.

104

ds? = —e 20 P(r)de? + 2e7dudr + r2dQ2,

100

Misner-Sharp quasi-local mass m Fr)=1- 2”;‘0(7“)
s e e =0, -
(r—r_) (r—ry)+2Mr3+lag —3r_(ry +r_)]r?
subject to - Taming of mass inflation as k_ — 0
r_ o~ |ry —2M|; as 2 %mr_. e pro " pre

B U ST

* Generalisation to rotating black holes.

E. Franzin, S.Liberati, J. Mazza and V. Vellucci, “Stable Rotating Regular Black Holes,”. [arXiv:2207.08864 [gr-qc]].

at+r3ry —3a*r_(r_ +ry)

Asin? 6

v 2m(r)r 4am(r)rsin? 6 X
et R e LN D (o) R 3G E
ds® = E{ <1 )dt > dtdqb—i—Adr + 3 d6° + > deo*|, o ST
2N 3 e s Al 3 )
w= Wi ;
Y =r+acos’8, A=71°-2m(r)r+a?, A= (r’+a??- Ad’sin’0, 7:22/[_374__“’ ry = M +vVM? a2,
r_r4
A= ;
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b
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However... semiclassical instability

S. Hollands, R.M. Wald and J. Zahn,
Class. Quant. Grav. 37 (2020) no.11, 115009

“ Zero surface gravity at the inner horizon might not

T. McMaken,
be enough to stabilise a regular black hole: there is Phys. Rev. D107 (2023) no.12, 125023
an exponential quantum iristability ruled by e, . By Rev. D106 (2092) mo-12, 124085
lime el e (52—
s ks 487 ( +)
* Preliminary investigations seems to suggest that 30 _:
# classical mass inflation would push the inner ’ —
: : O ]
horizon inwards [
* the quantum instability would push the inner SR o iy e S O ]
horizon outwards and dominate. = e g el ]
+ The position of the IH is basically set by £, so = ‘ ]
. : ; s 10 ¢ 2 ]
the semiclassical instability suggests that one : e ]
effectively gets £ — £(v) 05F EET ]
* So, this chain of instabilities may lead the RBH e e e ]
to end up extremal or a quasi-BH... 00 0.2 04 06 08
“ But quasi-BH have necessarily an inner stable e
. : | : Mn°? Credits: Edgardo Franzin, Stefano Liberati, Vania Vellucci. e-Print: 2310.11990 [gr-qc]
light ring! — possibly unstable again

Take home message: RBH are most probably always dynamical objects at most metastable.
Compatibility of this metastability with observations is an open issue.



Class 2: The Simpson-Visser Black-Bounce

oM N e : ;
d82 i (1 o~ ) dt2 & (1 = ) dr2 1 (7“2 ke 52) {d92 X Sin2 qubﬂ 7 A.Simpson, M.stse-r. JCAP 02 (2019) 042
r2 + 42 VT2 4 02 e-Print: 1812.07114 [gr-qc]
e a two-way, traversable wormhole a la Morris-Thorne for ¢ > 2M,
RN extension:
e a one-way wormhole with a null throat for ¢ = 2M, and E.Franzin,SL, ].Mazza, A.Simpson, M. Visser. JCAP 07 (2021) 036.

e-Print: 2104.11376 [gr-qc]
e a regular black hole, in which the singularity is replaced by a bounce to a different

universe, when ¢ < 2M; the bounce happens through a spacelike throat shielded by
an event horizon and is hence dubbed “black-bounce” in [6] or “hidden wormhole” as

per [4].
Rotatln g C()unterp art ].Mazza, E.Franzin, SL. JCAP 04 (2021) 082 e e-Print: 2102.01105 [gr-gc]
2M /12 + £2 )3 4Masin® 6+/12 + £2 Asin? 0
s o Cecen R A Bl D ] IR W e e T e n
o5 A Y Y
(2.16)
with
Y =72+ /0% +a%cos?0, A=7r24+0+a>—2M\/r2+ 22, 2/M
A= (2 + 024+ o) — Aa’sin?. 51
WOoH traversable wormbhole; Woy
nWoH null WoH, i.e. one-way wormhole with null throat; WoH
RBH-I regular black hole with one horizon (in the r > 0 side, plus its mirror image in the 1k RBH-I
r < 0 side);
RBH-II regular black hole with an outer and an inner horizon (per side);
eRBH extremal regular black hole (one extremal horizon per side); n"*BH RBH-II ™
: a
0 0.5 1

nRBH null RBH-I, i.e. a regular black hole with one horizon (per side) and a null throat.


https://arxiv.org/abs/2102.01105
https://arxiv.org/abs/1812.07114
https://arxiv.org/abs/2104.11376

E. Franzin, S. Liberati, J. Mazza, R. Dey and S.Chakraborty,
Phys. Rev. D105, no.12, 124051 (2022)

Class 2 limiting case: traversable wormholes

]
0 = (1- o) ot + (1= op) 074+ +6) [06 +s?oas?],
r r

(1 —2M/(\1r* + f2> = 0 has no roots for £ > 2M

(similarly for the rotating case)

Energy conditions violation at the WH throat

Also in this case the naked WH will sport for 2M < £ < 3M a

stable light-ring at the WH throat.

other universe

throat G

“X gt

our universe

=

7

throat - —

(a) The regular black hole. The maximally
extended spacetime continues above and below
the portion shown by repetition of this
fundamental block.

other universe

(b) The null-throat wormhole. The analytically

extended spacetime continues above and below

by repetition of this fundamental block.

e

other universe

throat

our universe

T

[

(c) The traversable wormhole.

Figure 1. Penrose diagrams of regular black hole, null-throat wormhole and traversable wormhole. The white area represents “our universe”

while the gray area is the “other universe”.

For £ > 3M there is only an unstable light-ring again at the

wormhole throat.

40 - unstable LR~ 7
[ BB WH throat ,*
i W
=30 unstable LR ,' 1
285 stable LR
[ WH throat
0 1 2 3 4
‘M

Take home message: In spite of being “more exotic” the Black Bounces
appear to be less prone to instabilities (no IH instability if £ > r_).
What about the WH case?



E.~Franzin, S.~Liberati and V.~Vellucci,

““From regular black holes to horizonless objects: quasi-normal modes, instabilities and spectroscopy, '’

[arXiv:2310.11990 [gr-qcl].

Cases 1 & 2: Quasi-normal modes analysis

Let us we study test- field and linear gravitational perturbations in such spacetimes,
varying the regularization parameters so to pass smoothly from RBHs to the ultracompact horizonless objects.

Bardeen RBH Bardeen Quasi-BH
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06 ¢
050 | 05¢

SV-BB SV-WH
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Figure 2. Quadrupolar / = 2 fundamental QNM:s of the Bardeen metric for test-field perturbations, s = 0 (blue), s = 1 (light purple) and s = 2
(red). On the left results for values of ¢ in the RBH branch that is from ¢ = 0 (Schwarzschild) to £ = {o = %M (extremal RBH). On the
right results for values of ¢ in the horizonless branch. Note that for values of the regularization parameter near the extremal case the imaginary
part is extremely small and thus we have very long living modes.

Regular Black holes Horizonless compact objects
Bardeen Simpson—Visser Bardeen  Simpson—Visser
Test s=2 Axial  Polar Test s=2 Axial  Polar Test s=2 Test s=2
(/M =0.2
Ag 0.0075 -0.0012 0.0037 —3-107° —0.0002 —0.0005
Ay _0.0045 .0090 0.0090 € 0.0022 ?).0044 0.0044
{/M = 0.6
Ag 0.0808  0.0069 0.0297 —-0.0003 -0.0163 —0.0067
A; 0.0674  0.0776 0.0810 0.0236  0.0292 0.0292
{/M =1.6
Ag —0.0053 -0.0690 —0.0428 Ag 0.0482
A; 0.1798 0.1854 0.1776 A; 0.5913
A ) o ‘”R/I_‘Ui‘, p S s
Table I. Relative deviations from the quadrupolar fundamental Schwarzschild frequency Az, = o = with o> M = 0.37367 — 0.08896i, for
R/T

s = 2 test-field and linear gravitational perturbations, both in the axial and polar sectors, for selected valued of the regularization parameter.
Results are shown for the Bardeen and SV spacetimes, on the left for the RBH branch and on the right for horizonless configurations. For the
Bardeen metric there are no results for £/M = 1.6 and § = 0.2, with § = /£ — 1, since for those values of compactness the spacetime not
only lose the presence of the horizon but even of a photon sphere. For both spacetimes results for axial and polar gravitational perturbations
are not reported for horizonless configurations because of the numerical issues present in this branch. Looking at the test field case, it is easy
to see the large increment A; passing from the RBH configurations to the horizonless ones for small Js.

Figure 3. Quadrupolar / = 2 fundamental QNMs of the SV metric for test-field perturbations, s = 0 (blue), s = 1 (light purple) and s = 2 (red).
On the left results for values of £ in the RBH branch, that is from ¢ = 0 (Schwarzschild) to £ = 2M (one-way wormhole with an extremal null
throat). On the right results for values of ¢ in the horizonless branch. It is worth noticing the relative flatness of the real part curves which
highlights weak deviations from the singular GR solution behaviour recovered for £ = 0. On the left results for values of the regularization
parameter near the extremal case ({ex, = 2M): the imaginary part is extremely small and thus we have very long living modes.

Summary
% For £ < M both the RBH and SV BB show deviations for the
Schwarzschild QNM
* SV BB tends to show smaller deviations.

»  Third generation GW detector with enough statistics might see this!
*  Quasi-BH configurations show marked longer perturbations lifetimes
(tiny imaginary part) for £ 2 £,
= This is a sufficient condition to expect non-linear instability and
appears to be related to the presence of the inner-stable-light-ring
+  However, note that the imaginary part becomes comparable with the
Schwarzschild one very rapidly as the compactness decreases even
before the inner-light ring disappear.

A non-linear analysis is definitely needed...
(and what about matter interactions?)



R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser,
Phys. Rev. D98, no.12, 124009 (2018)

Phenomenology: parametrising the uncertainties

Size, R = rg(1 + A): the value of the radius below which the modifications to the classical geometry are O(1). A > 0.
Note the compactness parameter p = A/(1 + A). So for A <« 1 one has u = A

T_-formation K-Absorption I'-Elastic T -Inelastic

UeF - Liftitts time M~ compactness Coeft. reflection Coeff. reflection Coeff. S(I)- fails
Classical
CR BH 00 ~10 M 0 1 0 0 0
Trapped
regions undertermined "'10 M O 1 O O NOI’I—ZeI' O
(RBH+Hidden WH)
Q . BH 2 Model Model Model Model Model Model
L dependent dependent dependent dependent dependent dependent
Bouncing
: . Model non-zero and
Geometries g1 e seient 0 1 0 0 Ol
(long lived)
Traversable Model Model
Wormholes = oy >0 dependent L 0 dependent

NOTE: ONE OF THE PARAMETERS IS NOT INDEPENDENT: E.G. INELASTIC INTERACTION PARAMETER MUST SATISFY I = 1 — x =T

INCLUDING ADDITIONAL INDEPENDENT PARAMETERS WOULD PROVIDE MORE FREEDOM TO PLAY WITH THE OBSERVATIONAL DATA BUT LESS
CONSTRAINING POWER. THE SET INTRODUCED IS MINIMAL, BUT STILL ABLE TO ASSES THE OBSERVATIONAL STATUS OF BLACK HOLES.



EM channels

P  Tracking several stars we can determine the mass of Sgr A* and our
/  distance from it. M = 4x10® Mg and d = 8 Kpc

1. Stars orbiting the BH mimicker
6 * + Most close orbiting star S2 constraints the radius of Sgr A*: The

+, ~

|\ iQ L

. g periastron of S2 is 17 light hours, while the Schwarzschild radius of
% Infalhng matter. Sgr A* is 40 light seconds. Therefore, A < 0(103).

NAIVE EXPECTATION:
STRONG CONSTRAINTS FROM ABSENCE OF THERMAL RADIATION FROM HARD SURFACE IN THE CASE OF QUASI-BH

HOWEVER QUITE GENERALLY RADIATION EMITTED AS A CONSEQUENCE OF SMASH OF MATTER ON A HARD
SURFACE RATHER THAN A HORIZON WILL BE SUBJECT TO STRONG LENSING. INDEED THE ESCAPE SOLID ANGLE IS

AQ ATk
For T S O(u?).
e e e e

<%+ Cataclysmic events (stars disruptions) ;
—4 I‘LTM* 108M®
weak constraint due to complex physics  # = 10 oo o 0(1) X ( Vi ) :

THEREFORE, ONLY A SMALL FRACTION OF THE LIGHT EMITTED FROM
THE SURFACE OF THE OBJECT WILL IMMEDIATELY ESCAPE TO INFINITY

o

»Steady accretion
Claims in the past of the exclusion of horizonless objects of ANY compactness. (Narayan-Broderick, 2006).

These derivations are based mainly on two strong assumptions:
1. Thermalisation of the reemitted flux. OK thanks to strong lensing.
2. Steady state: i.e. equilibrium of ingoing (accretion) and outgoing (reemission) fluxes. Not OK due to possible absorption

Neglecting k and I still one gets from SgrA* and IR emission 102 fainter than expected p~ A < 6(107"").

102 meters over a size of 1010 m! Still very far from Planck scale.

Let’s analyse in detail the case of non-zero absorption
(i.e. simple case k # 0 but I’ = 0)




R. Carballo-Rubio, F. Di Filippo, S.L. and M.Visser,
JCAPO8 (2022) no.08, 055.[arXiv:2205.13555 [astro-ph.HE]].

EH'T Constraints from Reemission

The minimum surface luminosity expected at infinity Leo can be estimated as
L. > nM where n = E/M

An upper bound on the observed luminosity can then be translated into a
constraint on the 5 parameter. From ETH we know 7 < 1072

How this translates on a bound on the relative compactness y =1 —2M/r, ? =~ Compactodlest :‘.‘A
Assuming that all the kinetic energy of infalling matter is converted to outgoing . a-n(1-52)¢1=¢
5 5 5 ~(\‘~~
radiation, leads to the naive resulty = 1 — \/;_4 3
However, this does not take into account lensing (AQ/2z = 27u/8 + O(u?)) and . A a (')
the possibility that part of the radiation is absorbed by the Quasi-BH. __(_1:@(%“ ' e
S > !

I.e. the case k # 0.

Indeed, one can model the quasi-BH—matter interaction as a series of bounces of the
radiation over the surface which have to be summed up.
N s AQN YT t=time over which SGrA* has been accreting

= ) 1—(1-k) == .

i . 2
7 = time for each bounce ~ O(10M) ~ 10° s

The net effect is n(t) =

Al L SOl tonlE—Sl— )= ()

For the physical limit 7/7T < k < 1 N = : :
2m /$+%—7?(1—"3) orforl=1-x=10%2=pu <1

So no meaningful upper-bound constraints can be placed for objects with large absorption coefficients
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Extension to rotating BH

Probability of photon escape for spinning UCO
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FIG. 11: Visualizations of photon escape probability for different values of a, normalized to the same color scale. The value
P = 1.6875-10"° corresponds to the case a = 0.

The re-emission of radiation can be enhanced or suppressed w.r.t. the non-rotating case if it
happens respectively at the equator or at the poles, due to the dependence of the escaping
angle to the azimuthal coordinate.


https://arxiv.org/abs/2005.01837

GW channel: Echoes

e In the case of a black hole GW scattered back at the potential barrier (usually close to the light ring) are lost
inside the horizon.
e For an horizonless object (quasi-BH or traversable wormhole) instead the wave can go through the center and
bounce again at the potential barrier with a part transmitted at infinity and one par reflected.
This generates “echoes”.

Key point: even for ultra compact objects the delay between such echoes is macroscopic
(logarithmic scaling).

Time delay for an object of compactness A = r/2M, — 1 -

rpeakz3M0 r
Alecho = 2[ ~ 2M, [1 A s 21n(2A)] 98—
r=2My(1+a) L~ 2Mo/ T

0.04

1° echo 2° echo

The amplitude of gravitational wave echoes would be 0.02 — |
proportional to I

=30M))

w(r.

A non-observation of echoes can only constrain this parameter. Dos

A positive detection of echoes could be used in order to
determine also A.
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The other two parameters which are relevant for the process i

are t+, which has to be greater than the characteristic time
scale of echoes (this would place a very uninteresting lower
bound on this quantity), and t. which has to be smaller . So far searches for quasi-periodic signals...



Echos and Non-linear back reaction

NON-LINEAR INTERACTIONS BETWEEN THE GW AND THE CENTRAL OBJECT

* These are neglected in extant analyses. However, this appears to be inconsistent
* For quasi-BH even modest amounts of accretion will generate a trapped region

* The formation of a trapping horizon might be avoided by nonlinear interactions

Example: If vacuum polarisations supports a QUasi-BH in Boulware vacuum

Ny

RGEEcc ==t e so even tiny change 2M—r can generate huge back-reaction.

r

The more compact the central object is, the larger is the fraction of
the energy stored in the gravitational waves to be transferred
through nonlinear interactions. I.e. large absorption

k=1- Eout/Ein
A model-independent outcome of these interactions has to be the
expansion of the central object in order to avoid the formation of
trapping horizons.

For very compact objects, very small AM corresponds to large
variations in the compactness.

So, even for k ~ 0.01 % one get noticeable delays between echoes
given that the compactness of the object has to increase

=30My)

w(r,

0 r_s(1+4)

V. Vellucci, E. Franzin and S. Livberati,

“Echoes from backreacting exotic compact objects,"

arXiv:2205.14170 [gr-qc]].
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Closure

BH are the new frontier for testing classical and quantum deviations from GR

Basic arguments from Penrose singularity theorem show that regular spacetime resolutions of
singularities are divide in two families depending on the absence/presence of a minimal radius

For both these families there are related horizonfull and horizonless solutions.

Ensuing instabilities of inner trapping horizon might lead to rapid evolution and specific long
living configuration...

In any case: avoiding the central singularity appears to generically lead to long range effects (in
time or space).

The resulting black hole mimickers are very hard to exclude with current observations but they
are not hopeless and better modelling plus multimessanger astrophysics will be the key to this.

Hopefully, we might be at the dawn
ofianew form ot QG

phenomenologyibasedion Bl
PPSEIVALIONS!




THANK YOU!

£ sufe we have seen so many
X GR black holes!

we have seen many ultra
compact object in the sky

-

Haven’t we?




