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In quantum field theory the notion of vacuum state has no universal meaning

“Before the 70s nobody thought very much about “for whom” the vacuum state
appears devoid of “stuff”...”

(P.C.W. Davies, “Particles Do Not Exist,” In Christensen, ( Ed.): Quantum Theory Of Gravity, 66-77 (1984))

Example in Minkowski spacetime:

the vacuum state for inertial observers is perceived
as a thermal state to accelerated observers (Unruh effect)

Looking deeper: (free quantum fields)

• vacuum state ambiguity = different possible choices of time-like Killing vectors

in particular: the vacuum of “horizonless” Killing vector
=

thermal state for a non-globally time-like Killing vector
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For conformally invariant fields the range of choices extends to
(time-like) conformal Killing vectors

E.g. use dilations as generators of time evolution in the future cone of 2d Minkowski
space-time (Wald, Phys. Rev. D 100 (2019), 065019): “Milne quantization” of a massless field:

Milne temperature

Orbits of a conformal Killing vector are worldlines of observers within a causal diamond:
diamond temperature (Martinetti and Rovelli, Class. Quant. Grav. 20, 4919 (2003))

This talk:

• provide a unified, group-theoretical description of (the conformal quantum
mechanics counterparts of) Milne and diamond temperature

• simplest (toy) model where analytic calculation of entanglement entropy
associated to a partition induced by the modular Hamiltonian is possible

MA, JHEP 05, 072 (2020) [arXiv:2002.01836 [gr-qc]], JHEP 07, 003 (2021) [arXiv:2103.07228 [hep-th]]

MA, D’Alise and Frattulillo, JHEP 10 (2023) [arXiv: 2306.12291 [hep-th]]
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Radial conformal motions in Minkowski space-time

Minkowski metric in spherical coordinates

ds2 = −dt2 + dr 2 + r 2(dθ2 + sin2 θ dφ2)

the most general radial conformal Killing vector (Lξgµν ∝ gµν) has the form

ξ =
(
a(t2 + r 2) + bt + c

)
∂t + r(2at + b) ∂r

with a, b, c real constants (Herrero and Morales, J. Math. Phys. 40, 3499 (1999))

Key observation: this conformal Killing vector can be written as

ξ = aK0 + bD0 + cP0 ,

where K0, D0 and P0 generate, respectively,
special conformal transformations, dilations and time translations
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Families of radial conformal Killing vectors

The generators K0, D0 and P0

P0 = ∂t , D0 = r ∂r + t ∂t , K0 = 2tr ∂r + (t2 + r 2) ∂t

close the sl(2,R) Lie algebra

[P0,D0] = P0 , [K0,D0] = −K0 , [P0,K0] = 2D0

General RCKV ξ = aK0 + bD0 + cP0 classified according to the sign of ∆ = b2 − 4ac

- ∆ < 0: elliptic transformations (sl(2,R) ' so(2, 1) → rotations)

R0 =
1

2

(
αP0 +

K0

α

)

- ∆ = 0: parabolic transformations (null rotations): P0 and K0.

- ∆ > 0: hyperbolic transformation (Lorentz boosts): D0 and

S0 =
1

2

(
αP0 −

K0

α

)
α is a constant with dimensions of length, crucial in what follows...
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Milne time evolution

D0 = r ∂r + t ∂t

generates conformal time evolution in a Milne universe (Minkowski future cone)

ds2 = −dt̄ 2 + t̄ 2
(
dχ2 + sinhχ2dΩ2

)
where t = t̄ coshχ and r = t̄ sinhχ (notice similarity with Rindler coordinates...)

(from Ellis and Williams, “Flat and Curved Space-Times”)
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Diamond time

S0 = 1
2

(
αP0 − K0

α

)
= 1

2

(
α∂t − 1

α

(
2t r ∂r − (t2 + r 2) ∂t

))
maps a causal diamond of radius α into itself (Jacobson, PRL 116(2016)20)

(from Jacobson and Visser, SciPost Phys. 7, no.6, 079 (2019))

generates time evolution for
uniformly accelerated observers with finite lifetime
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Worldline conformal time evolution

Along r = const worldlines and on the light cones u = t − r = const, v = t + r = const

ξ =
(
a τ 2 + b τ + c

)
∂τ

=⇒ the generator of conformal transformations of the real (time) line τ ∈ R

• P0 = ∂τ generates translations in “inertial time” τ covering the entire time line

• D0 = τ∂τ generates translation in “Milne time” ν: D0/α = ∂ν

τ = ±2α exp
ν

α

covering half time line (τ > 0 or τ < 0 )

• S0 = 1
2α

(
α2 − τ 2

)
∂τ generates translation in “diamond time” σ: S0/α = ∂σ

τ = α tanhσ/2α

covering the region |τ | < α: the “diamond”
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Conformal quantum mechanics

As it turns out
G = iξ = i

(
a τ 2 + b τ + c

)
∂τ

is the most general generator of time evolution in “conformal quantum mechanics”.

A 0 + 1-dimensional QFT invariant under SL(2,R)
(de Alfaro, Fubini and Furlan, Nuovo Cim. A 34, 569 (1976));

Starting from the Lagrangian

L =
1

2

(
q̇(t)2 +

g

q(t)2

)
, g > 0

the sl(2,R) algebra can be canonically realized

H = iP0 =
1

2

(
p2 +

g

q2

)
D = iD0 = t H − 1

4
(pq + qp)

K = iK0 = −t2 H + 2t D +
1

2
q2
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Conformal quantum mechanics as a CFT1

Tha dAFF model can be interpreted as CFT1

(Chamon, Jackiw, Pi and Santos, Phys. Lett. B 701, 503 (2011); Jackiw and Pi, Phys. Rev. D 86, 045017 (2012))

Two-point functions are built from the kets |τ〉 first introduced by dAFF

H |τ〉 = −i ∂τ |τ〉

One starts from irreps of sl(2,R): define ladder operators

L± = 1
2

(
K
α
− αH

)
± i D , L0 = 1

2

(
K
α

+ αH
)

with [L−, L+] = 2L0 , [L0, L±] = ±L±, irreps are given by kets |n〉

L0 |n〉 = rn |n〉 , rn = r0 + n , r0 ≥ 1 , n = 0, 1 . . . (discrete series)

C |n〉 =
(
1
2

(KH + HK)− D2
)
|n〉 = r0(r0 − 1) |n〉

L± |n〉 =
√

rn (rn ± 1)− r0 (r0 − 1) |n ± 1〉
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CFT1 two-point function

The |τ〉 states can be characterized by their overlap with |n〉 states

〈τ |n〉 = (−1)n
[

Γ(2r0 + n)

n!

] 1
2
(
α− iτ

α + iτ

)rn
(

1 +
τ 2

α2

)−r0

from which one obtains the inner product

〈τ1|τ2〉 =
Γ (2r0)α2r0

[2i (τ1 − τ2)]2r0

which Jackiw, Pi et al. interpret as the two-point function of the CFT1

For r0 = 1: two-point function of a massless scalar field in Minkowski space-time,
evaluated along the worldline of an inertial observer sitting at the origin

ASIDE: this is reminiscent of the SL(2,R)-invariant wordline quantum mechanics
for static patch observers in de Sitter space-time

(Anninos, Hartnoll and Hofman, Class. Quant. Grav. 29, 075002 (2012))
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A bi-partite vacuum state

As shown by Jackiw, Pi et al. we can re-write the CFT1 two-point function as

G2(τ1, τ2) ≡ 〈τ1|τ2〉 = 〈τ = 0|e−i(τ1−τ2)H |τ = 0〉

where
|τ = 0〉 = exp(−L+)|n = 0〉 (we set r0 = 1)

Crucial observation:
L± and L0 can be realized in terms of creation and annihilation operators

L+ = a†La
†
R , L− = aLaR , L0 =

1

2

(
a†LaL + a†RaR + 1

)
and thus

|τ = 0〉 = exp
[
−a†La

†
R

]
|0〉L ⊗ |0〉R

so that
|n = 0〉 = |0〉L ⊗ |0〉R

the ground state |n = 0〉 has a bi-partite structure!
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CFT1 vacua

Notice now that the Lie algebra

[L−, L+] = 2L0 , [L0, L±] = ±L±

can be realized via another combination of H, D and K , namely

L0 = iS , L+ =
1

2
(D − R) , L− = 2 (D + R)

we have two vacuum-like states...

• |n = 0〉 “Boulware vacuum”:

the ground state of the generator of diamond time evolution S

• |τ = 0〉 “Hartle-Hawking vacuum”: the “inertial vacuum” from which we build

G2(τ1, τ2) = 〈τ = 0|e−i(τ1−τ2)H |τ = 0〉

as in the “real world” the Hartle-Hawking vacuum is a thermofield double state
built on the bi-partite Boulware vacuum
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The thermofield double of CFT1

With simple manipulations

|τ = 0〉 =
∞∑
n=0

(−1)n

n!

(
a†La
†
R

)n
|0〉L ⊗ |0〉R =

∞∑
n=0

(−1)n|n〉L ⊗ |n〉R

= −
∞∑
n=0

e iπL0 |n〉L ⊗ |n〉R

and thus

|τ = 0〉 = −
∞∑
n=0

e−πS |n〉L ⊗ |n〉R

mini-detour: given a set of eigenstates H |k〉 = Ek |k〉 for a quantum system,
the thermofield double state is built by “doubling” the system

|TFD〉 =
1

Z(β)

∞∑
k=0

e−βEk/2|k〉L ⊗ |k〉R

tracing over the degrees of freedom of one copy ⇒ thermal density matrix at T = 1/β

TrL(|TFD〉〈TFD|) = e−βH
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Diamond temperature

The inertial vacuum

|τ = 0〉 = −
∞∑
n=0

e−πS |n〉L ⊗ |n〉R

has the structure of a thermofield double state with temperature

TS =
1

2πα

for the Hamiltonian S/α which generates diamond time evolution

This is just the diamond temperature for diamond observers at the origin
(Su and Ralph, Phys. Rev. D 93, no.4, 044023 (2016))

Indeed the two-point function for a diamond observer sitting at the origin coincides
with the CFT1 two-point function in diamond time

and both are periodic in imaginary time i.e. thermal at temperature TS = 1
2πα

(MA, JHEP 05, 072 (2020) [arXiv:2002.01836 [gr-qc]])
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From the diamond to Milne

S and D belong to the same class of generators of hyperbolic time evolutiony
one can find a SL(2,R) transformation mapping one into another

such map τ → τ ′ is easily found by requiring that S(τ) ≡ D(τ ′)

τ ′ = −2α
τ + α

τ − α

note: this is the map from the causal diamond to the Rindler wedge used to derive
the diamond modular Hamiltonian from the Rindler one (in light-cone coordinates)

(Casini, Huerta and Myers, JHEP 05, 036 (2011))
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The Milne temperature

The conformal map

τ ′ = −2α
τ + α

τ − α

leads to the following identification for the ladder operators

L0 = iD , L+ = −αH , L− =
K

α

|n = 0〉 is seen as the CFT1 analogue of the vacuum state associated
to the generator of Milne time evolution D

the “inertial” vacuum |τ = 0〉 is the thermofield double for the Hamiltonian D/α
at the Milne temperature (Olson and Ralph, PRL 106, 110404 (2011), arXiv:1003.0720)

TD =
1

2πα
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Getting hot without accelerating

Observers whose worldlines are integral curves of time-like RCKV

ξ = aK0 + bD0 + cP0

are accelerated (Herrero and Morales, J. Math. Phys. 40, 3499 (1999))

|a| =
2|a|√
ω −∆

where ∆ = b2 − 4ac and ω = a(t2−a2)+bt+c
r

• For integral curves of D (worldlines of Milne observers) a = c = 0 =⇒ |a| = 0

• For integral curves of S (diamond observers) b = 0, a = − 1
2α

, c = α
2

at r = 0 we have ω =∞ and thus |a| = 0

You can get hot without accelerating!
(if you enjoy conformal symmetry...)

Michele Arzano — Horizon temperature and entanglement entropy in conformal quantum mechanics 18/20



Getting hot without accelerating

Observers whose worldlines are integral curves of time-like RCKV

ξ = aK0 + bD0 + cP0

are accelerated (Herrero and Morales, J. Math. Phys. 40, 3499 (1999))

|a| =
2|a|√
ω −∆

where ∆ = b2 − 4ac and ω = a(t2−a2)+bt+c
r

• For integral curves of D (worldlines of Milne observers) a = c = 0 =⇒ |a| = 0

• For integral curves of S (diamond observers) b = 0, a = − 1
2α

, c = α
2

at r = 0 we have ω =∞ and thus |a| = 0

You can get hot without accelerating!
(if you enjoy conformal symmetry...)

Michele Arzano — Horizon temperature and entanglement entropy in conformal quantum mechanics 18/20



Getting hot without accelerating

Observers whose worldlines are integral curves of time-like RCKV

ξ = aK0 + bD0 + cP0

are accelerated (Herrero and Morales, J. Math. Phys. 40, 3499 (1999))

|a| =
2|a|√
ω −∆

where ∆ = b2 − 4ac and ω = a(t2−a2)+bt+c
r

• For integral curves of D (worldlines of Milne observers) a = c = 0 =⇒ |a| = 0

• For integral curves of S (diamond observers) b = 0, a = − 1
2α

, c = α
2

at r = 0 we have ω =∞ and thus |a| = 0

You can get hot without accelerating!
(if you enjoy conformal symmetry...)

Michele Arzano — Horizon temperature and entanglement entropy in conformal quantum mechanics 18/20



Getting hot without accelerating

Observers whose worldlines are integral curves of time-like RCKV

ξ = aK0 + bD0 + cP0

are accelerated (Herrero and Morales, J. Math. Phys. 40, 3499 (1999))

|a| =
2|a|√
ω −∆

where ∆ = b2 − 4ac and ω = a(t2−a2)+bt+c
r

• For integral curves of D (worldlines of Milne observers) a = c = 0 =⇒ |a| = 0

• For integral curves of S (diamond observers) b = 0, a = − 1
2α

, c = α
2

at r = 0 we have ω =∞ and thus |a| = 0

You can get hot without accelerating!
(if you enjoy conformal symmetry...)

Michele Arzano — Horizon temperature and entanglement entropy in conformal quantum mechanics 18/20



Entanglement entropy

The |t = 0〉 state is non-normalizable (≡ divergence of 2p function at coincident points).

Regularize through infinitesimal imaginary time translation

|t = iε〉 = N
(

α

α + ε

)2 ∞∑
n=0

(−1)n
(
α− ε
α + ε

)n

|n〉L|n〉R

Consider the density matrix ρLR = |t = iε〉〈t = iε|
• Trace over one set of d.o.f. (e.g. |n〉R)

ρL = Tr RρLR = N 2

(
α

α + ε

)4 ∞∑
n=0

(
α− ε
α + ε

)2n

|n〉L L〈n|

• The Von Neumann entropy of ρL is given by

S = −Tr ρL log ρL = −
(α− ε)2 log

(
(α−ε)2
(α+ε)2

)
4αε

− log

(
4αε

(α + ε)2

)
in the limit ε→ 0

S = log
(α
ε

)
+ const +O(ε2)
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Conclusions

CQM (seen as a 0 + 1-d QFT) rich enough to reproduce thermal effects
related to the freedom in the choice of time evolution in QFT

Correspondence between radial conformal flows in Minkowski space-time
and time evolution in conformal quantum mechanicsy

group-theoretic evidence for Milne and diamond temperatures

the inertial vacuum is a thermal state for observers whose
time evolution is not eternal

thermodynamic properties of the Milne “patch” and of causal diamonds
are deeply connected...

=⇒ new tools for studying entanglement and “modular fluctuations”
(Verlinde and Zurek Phys.Lett.B 822 (2021)) in Minkowski space-time?

=⇒ run same arguments using affine transformations of the real line
(MA and J.Kowalski-Glikman, Phys. Lett. B 788, 82-86 (2019) [arXiv:1804.10550 [hep-th]].)
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