

BULLKID-DM

Marco Vignati on behalf of the coll., LNGS, 22 April 2024

Direct dark matter search below 1 GeV/c²

Dark Matter

target nucleus

Vignati - 3

observable: kinetic energy of nuclear recoil

observable: kinetic energy of nuclear recoil

Background issue in low-T experiments

Not understood *excess* background rising at low energies

P. Adari, et al.: EXCESS workshop: Descriptions of rising low-energy spectra SciPost Phys. Proc. 9 (2022) 001 + D. Delicato et al EPJ C 84 (2024) 353

BULLKID / Vignati - 5

- Phonon bursts (crystal-support friction) ?
- Lattice relaxations after cool down?
- Phonon leakage from interactions in the supports?
- Neutrons (cosmic ray induced, radioactivity) ?

Excess workshop 2024 Roma, 6 July https://agenda.infn.it/event/39007/

This background limits the sensitivity of present experiments

The BULLKID phonon-detector array

Phonon mediation

detect phonons created by nuclear recoils in a silicon die

BULLKID / Vignati - 6

A. Cruciani, et al, Appl. Phys. Lett. 121, 213504 (2022)

The BULLKID phonon-detector array

BULLKID / Vignati - 6

carving of dice in a thick silicon wafer

✓ monolithic

- 4.5 mm deep grooves
- 6 mm pitch
- chemical etching

0.5 mm thick common disk:

- holds the structure
- hosts the sensors

The BULLKID phonon-detector array

BULLKID / Vignati - 6

A. Cruciani, et al, Appl. Phys. Lett. 121, 213504 (2022)

carving of dice in a thick silicon wafer

lithography of KID sensors

✓ monolithic

- 4.5 mm deep grooves
- 6 mm pitch
- chemical etching

0.5 mm thick common disk:

- holds the structure
- hosts the sensors

KID sensor array:

- 60 nm thick aluminum film
- 60 elements (1 per die)

✓ 60 detectors in 1

Fully multiplexed (single readout line)

Kinetic Inductance Detectors (KIDs)

 Z_0

E

- Superconductor at T < 200 mK (AI)
- .C resonator
- Cooper pairs inductance $L_k = \frac{m_e}{2 e^2 n_{\text{pairs}}}$
- Absorbed energy breaks Cooper pairs

Kinetic Inductance Detectors (KIDs)

 Z_0

- Superconductor at T < 200 mK (AI)
- LC resonator
- Cooper pairs inductance $L_k = \frac{m_e}{2 e^2 n_{\text{pairs}}}$
- Absorbed energy breaks Cooper pairs

Readout: different KIDs coupled to a the same line

frequency scan of the 60 KIDs of BULLKID

Phonon leakage and mapping

- 50% of phonons is detected in the interaction die
- 50% leaks out and is detected in nearby dice
 - (8 ± 2) % in each "+" die
 - (3 ± 1) % in each "x" die
 - the rest in outer dice lacksquare

BULLKID / Vignati - 8

This effect reduces the phonon focusing on the KID but is exploited to identify the interaction voxel

Background: pulse shape + phonon cuts

Trigger onlyCuts only

-- Cuts + trigger

Background: result on surface Above ground lab @Sapienza U., no shield, 39 live hours

BULLKID / Vignati - 10

The excess above trigger threshold is compatible with noise false positives. Background is flat above analysis threshold.

BULLKID-DM Collaboration

BULLKID / Vignati - 11

Roma Ferrara LNGS Pisa

Dark Matter - direct search with BULLKID-DM

BULLK demon	ID-DM strator	BULLKID-DM		
60	g	600 g		
18	30	~2500		
200	eV	200 eV or lower		
~1	0 4	10 - 0.01		
Sapienza	LNGS?	LNGS		
2024	2025	2027?		

Threshold and mass

Threshold and mass

Threshold (ongoing R&Ds):

- 1. Replace AI with AI-Ti-AI KIDs: 5x inductance
- 2. Deeper carvings for higher phonon focussing

Threshold and mass

Threshold (ongoing R&Ds):

1. Replace AI with AI-Ti-AI KIDs: 5x inductance

2. Deeper carvings for higher phonon focussing

Prototype - 20 g / 60 dice single 3" wafer concluded in 2023

Demonstrator - 60 g / 180 dice 3-layer stack of 3" wafers first operations before summer

R&D on large wafer 50 g / 145 dice single 100 mm wafer first operations fall 2024

BULLKID-DM - 600 g / ~2500 dice 16-layer stack of 100 mm wafers commissioning in 2026 at Sapienza U.

Towards the experiment

Underground cryo-infrastructure

Dilution refrigerator with T < 80 mKCryostat outer shielding (PE, Pb, ...) Inner shielding Outer muon veto ~20 RF lines

MC Simulations

Design of the apparatus Definition of required radiopurity

Inner veto or shield

Cryo-veto around the BULLKIDs (BGO/GSO + Light detector) or lead passive shield?

Energy calibration options

- IR light
- neutron recoils (a là CRAB)
- ¹³⁷Cs or ⁶⁰Co Compton
- asynchronous

RF Readout and DAQ SDR boards onboard trigger

Computing Data transfer Data storage

Data analysis 2000+ channels, cluster analysis

LNGS Cryogenic facility

BULLKID-DM intends to be a user of the new facility in Hall B Additional shielding might be required

BULLKID / Vignati - 15

Ordered Oxford

Replaceable insert to be Proteox fits the needs instrumented with RF lines

Simulations: shields and veto

Currently working on internal contaminations in lead and veto

BULLKID / Vignati - 16

muons, gammas and neutrons from: Astropart. Phys. 33 (2010) 169, Phys. Rev. D 73 (2006) 053004, Eur. Phys. J. A 41 (2009) 155, Astropart. Phys. 22 (2004) 313.

BULLKID / Vignati - 17

Assembly with reflector

Energy [keV]

Goal: energy threshold < 50 keV

RF Electronics

Current electronics (Ettus x310): 30 KIDs / board

New electronics (ZCU216 Evaluation Board with 16 lines): Goal >= 150 KIDs / line

- Custom Analog Front-End and
- Control Firmware by the KIT group
- Status: first tests on BULLKIDprototype

Wrap-up

- ✓ 0.6 kg of silicon target
- \checkmark 2500 detector units (dice)

Unique features for bkg. suppression:

- No inert material in \checkmark detector volume
- fully active \checkmark
- fiducialization \checkmark

Will it help with the unknown backgrounds?

Prototype works	demonstrator	60 KID	150	
	(3 wafer)	electronics	and	
2023	2024			

tentative schedule for LNGS:

Backup slides

State of the art of phonon detection (CRESST/NUCLEUS experiments)

Limitation: individual readout

Pro: record-low energy threshold ~ 20 eV

Future experiments point to kg targets (100+1000 crystals) challenging with this technology

NUCLEUS: experimental apparatusabove ground experiment (3 m.w.e)In BULLKID: BGO/

C. Goupy et al [NUCLEUS Coll.], arXiv:2211.04189

a) 28 5-cm thick Muon Veto panels, b) a 5-cm thick lead layer, and c) a 20-cm thick borated polyethylene. d) A dilution refrigerator is inserted inside the shielding and contains e) a 4-cm thick boron carbide layer and f) a Cryogenic Outer Veto made of six high purity germanium crystals held by g) a copper cage. Finally the cryogenic detectors are organised in two arrays of nine cubes of i) CaWO4 and j) Al2O3, held by h) the silicon inner veto.

BULLKID / Vignati - 22

In BULLKID: BGO/GSO crystals read by the KID light detectors of CALDER?

CALDER: light detectors w KIDs erc calder

BULLKID / Vignati - 23

L. Cardani et al, EPJC 81 (2021) 636

Area [cm ²]	25
AE [eV RMS]	34 90 w/o vibration decoupling
oonse time [ms]	0.12
nperature [mK]	8-120
# detectors	Multiplexing

Could be coupled to scintillating crystals for the BULLKID veto

+) RMS@0 eV: 26 ± 7 eV -) Response not uniform

A. Cruciani, et al, Appl. Phys. Lett. 121, 213504 (2022)

Improvement of uniformity ('23)

First version of the array

BULLKID / Vignati - 25

Same array with improved grounding

		6	Х	4	3	2	1		
	х	8	9	10	11	12	13	14	
	22	21	Х	19	18	17	16	15	
	23	24	25	26	27	28	29	30	
	38	37	36	35	34	33	32	х	
	х	40	41	42	43	44	45	х	
	54	53	52	51	50	х	48	47	
		55	56	57	58	59	х		
Q Value									
10^4 10^5 1						10)		
Q									
+) All KIDs with Q $\sim 10^5$ (
–) Some resonator lost d									

6 (optimal sensitivity)

Airbridges connecting **GND** planes

luring operations

Status of the 3-wafer demonstrator

2-wafer stack operated. No issues observed

3rd wafer produced and tested. Assembly in the stack in May '24

Status of 100 mm wafers

145 KID array test on thin (0.3 mm) wafer successful

Assembly under development

5 mm wafer grooved succesfull

Simulations: validation on Sapienza setup

Gammas (99%) and neutrons (1%) measured and used as input for the simulation

Agreement over wide energy range observed

Mild lead shield added

Reduction of the background agrees with simulations

Sensitivity

