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At the beginning of ’50 people were losing hope of a microscopic theory

of strong interactions. In 1953 Dyson after spending nearly one year

with his students on some computation in perturbative pion nucleon

theory went to Fermi to ask an opinion:

With the pseudoscalar meson theory there is no physical picture, and

the forces are so strong that nothing converges. To reach your

calculated results, you had to introduce arbitrary cut-off procedures

that are not based either on solid physics or solid mathematics.

In desperation I asked Fermi whether he was not impressed by the

agreement between our calculated numbers and his measured numbers.

He replied, “How many arbitrary parameters did you use for your

calculations?” I thought for a moment about our cut-off procedures and

said, “Four.” He said, “I remember my friend Johnny von Neumann

used to say, with four parameters I can fit an elephant, and with five I

can make him wiggle his trunk.”





Agnostic theories: symmetries, dispersion relations, S-matrix, Regge

pole, superconvergence sum rules, bootstrap but not field theories. As

remarked by David Gross until 1973 it was not thought proper to use

field theories without apologies.

(Gell-Mann Telegdi 1965) We use the method of abstraction from a

Lagrangian field theory model. In other words, we construct a

mathematical theory of the strongly interacting particles, which may or

may not have anything to do with reality, find suitable algebraic

relations that hold in the model, postulate their validity, and then throw

away the model. We compare this process to a method sometimes

employed in French cuisine: a piece of pheasant meat is cooked between

two slices of veal, which are then discarded.



Around 1960 Geoffrey Chew proposed the boostrap philosophy.

There were no elementary constituents all particles were supposed to be

on the same footing. This approach became extremely popular and also

Murray Gell-Mann was not taking quarks seriously: he was considering

more as a mathematical model to implement SU(3) symmetry. Field

theory was discredited and some authors suggested that a good

knowledge of quantum field theory was detrimental to the

comprehension of bootstrap.

This was a somewhat strange position because dispersion relations were
a cornerstone of bootstrap and they were firstly derived in the context
of local field theory. Ironically the bootstrap approach was instrumental
to the birth of string theories which are among the most sophisticated
quantum field theories.



The absence of elementary point-like objects suggested that hadrons

were extremely soft.

This viewpoint was confirmed by the very fast decay of the proton form

factor. This viewpoint was confirmed by the exponential suppression of

particle productions at large momentum transfer and by Hagedorn

theory where a maximum temperature somewhat less than 200 MeV was

supposed to be present in nature: also a very energetic hadronic fireball

would emit hadrons of no more than few hundredth MeV.



There was also a different viewpoint. Electromagnetism, Fermi

interactions, and the V-A theories for weak interaction were based on

local currents and quantum field theory. The purely leptonic

electro-weak was described by a field theory that was

non-renormalizable, however, there was some hope that the introduction

of heavy vector Bosons could make the theory renormalizable.

The semi-leptonic weak interaction was mediated by a hadronic current,

and the resulting current algebra (based on local commutators) was

crucial to normalizing the weak interaction vertices, which played a

fundamental role in Cabibbo’s theory of weak interaction.

This quantum field theory approach to physics was strongly pushed in

Europe: there were strong collaborations among different scientific

institutions that were later formalized in the Triangular Meetings

(Paris-Rome-Utrecht).



Crucial steps to Bjorken scaling

• (1958) V-A theory for ∆S = 0 semileptonic transitions (Feynman,

Gell-Mann)

• (1963) Cabibbo theory for ∆S = 1 semileptonic transitions

• (1965) Current algebra, local commutator (Dashen, Gell-mann)

• (1965) Local commutators imply sum rules, infinite momentum

frame, and very important paper (Fubini, Furlan)

• (1967) Current algebra at small distances (Bjorken)

• (1968) Callan and Gross sum rule for deep inelastic scattering,

generalized by Cornwall and Norton.

• (1968) Bjorken scaling paper based on previous sum rules

• (1969) Feynman parton model

• (1969) Deep inelastic scattering in the parton model (Bjorken and

Paschos)



Deep Inelastic scattering

The process is

electron+nucleon→ e+hadrons virtualGamma+nucleon→ hadrons

The mass squared of the virtual photon is −q2 and its energy is ν/M .

One is interested in the region of both large, away from elastic

scattering. One defines

x =
q2

ν
, ω = x−1 =

ν

q2

We can write the cross-section in terms of two functions of these two
variables (F1, F2).



Bjorken scaling

Let us concentrate on the function F2(q
2, x).

Roughly speaking, if one generalizes current algebra and assumes that

some equal-time commutators of currents and their derivatives have a

non zero vanishing elements, one finds

lim
q2→∞

∫ 1

0
dxF2(q

2, x)xn = mn+1

with non-zero mn. The case n = 0 is related to standard equal-time

commutators of currents.

It is natural to assume that

lim
q2→∞

F2(q
2, x) = F∞2 (x).



Bjorken scaling and Partons (Bjorken and Paschos)

The variable x defined before is also the fraction of the momentum of

the parton with respect to the proton in the P =∞ frame.



The data used by Bjorken and Paschos

ω = 1/x





The data three years later (1972)



Renormalization group

In the sixties, the renormalization group was not well understood.

Bjorken and Drell in the book wrote that in electrodynamic if (in

modern language) the function β(e2) has a zero at e20: the bare charge

is given by



New interest in 1970 with the Callan Symanzik equation.

It was much more easy to understand. It seemed less paradoxical the
the renormalization group. It worked very well with the massive
theory. In the 1971 paper, Symanzik proves in one particular case the
Wilson operator expansion for the scalar φ4 theory.



The changeover: Wilson operator expansion On Products of

Quantum Field Operators at Short Distances (1964) Cornell Report

LNS-64-15 Cited firstly by Brandt in 1967. Second citation 1970 (34

citations now) Similar ideas were rediscovered in the context of phase

transition by Migdal and Polyakov: operator fusion. Wilson short

distance operator product expansion states that in the limit of small x

the product of two operators can be written as

A(x)B(0)→x→0

∑
C

C(0)|x|−dA−dB+dC .

The leading terms come from the operators C with the lowest
dimensions. The dimensions of the operators were the canonical ones in
free theory where everything was clear.



Wilson ideas became popular much later, we the magnificent paper:

Non Lagrangian models of current algebra (1969) has more that 3000

citations. The strong interactions become scale-invariant at short

distances. This was proposed by Kastrup and Mack. And it was taken

for granted that it was not a free theory at short distances.

Wilson is speaking of fields (e.g. the pion field), and their dimensions

... Strong interaction are described by a field theory: we have to find

which one.



Brant Preparata. Light cone expansion (1970)

• Deep inelastic scattering corresponds in configuration space to the

singular behavior near the light cone x2 = 0 of the function

〈p|J(x)J(0)|p〉

• The equal time commutators of the derivatives of the current are

replaced by the Wilson expansion.



Bjorken Scaling follows if the lightcone singularities are the same as in

free theory, i.e. if the operators that enter into the Wilson expansion

have canonical dimensions. Light cone expansion:

J(x)J(0)→x2→0

O(x0, 0)

x2
,

where O(x0, 0) is a bilocal operator. In free field theory, the naive
light cone expansion can be derived by the Wilson expansion by doing a
Taylor expansion at x0 = 0. An infinite number of terms in the Taylor
expansion have to be considered, each term corresponding to a different
moment of the experimental structure-function. In this way, the
Wilson short-distance operator product becomes deeply related to the
experimentally observed approximate Bjorken scaling.



What happens in an interacting theory?

Christ, Hasslacher, and Muller (1972) computed the

coupling-dependent anomalous dimensions of the operators relevant for

deep inelastic scattering (the so-called twist-two operators) for a [seudo

scalar theory and for a theory with a simple vector interaction If we

neglect the dependence of the running coupling constant on the

momenta, one has something like

Mn(q2) ≡
∫ 1

0
dxxn−1F (x, q2) ; Mn(q2) = Cn exp(γn(α) log(q2)) . (1)

The dependence on the running coupling constant can be trivially added.



Which theory at large momenta?

A strong interacting theory or a free theory like the λφ4 with negative

coupling constant proposed by Symanzik.

All stable theories without gauge fields were not asymptotically free

(Coleman 1972, Landau 1955).

Asymptotic freedom was discovered in

• In 1969 Iosif Khriplovich with a beautiful computation that could be

done on the back of the envelope.

• In 1972 Gerald ’t Hooft (Marseille conference)

• In 1973 Gross, Politzer and Wilczek



In 1973 Georgi and Politzer, Gross, and Wilczek computed the

Christ-Hasslaker-Muller formulae to QCD, we get a simple result if we

consider only valence quark. When we take care of the running

coupling constant, we get the final formulae:

∂Mn(q2)

∂ log(q2)
= γn(α(q2)) ,

where the linear term in α(q2) of is obtained from the

Christ-Hasslaker-Muller formulae (at order α). /nuova

If we use the standard properties of the Mellin transform and of the

inverse Mellin we finally get

∂F (x, q2)

∂ log(q2)
=
∫ 1

x

dy

y
F (x, q2)Pq,q(x/y, α(q2)) ,

where the quark fragmentation function Pq,q(z, α(q2)) is the inverse



Mellin transform of the anomalous dimensions γn(α(q2)).

However, only later we understood that this function is the quark

fragmentation function.

Using the first order in α for γn(α) we finally get for the non singlet

contribution:

Pq,q(z) =
8

3

α(q2)

4π

(
1 + z2

(1− z)+
+

3

2
δ(z − 1)

)

Using only Mellin and inverse Mellin transform one can compute the
violations of scaling without any physical interpretation of the formulae
(Parisi Petronzio 1976) (for α = 0.4(.





Despite the relative simplicity of the final results, their derivation,

although theoretically rigorous, is somewhat abstract and formal, being

formulated in the language of renormalization group equations for the

coefficient functions of the local operators which appear in the light

cone expansion for the product of two currents.



The parton model revised

However, if you want to study

p+ p→ µ+µ− + hadrons

no Wilson operator expansion works for that problem.

The solution was the appropriate generalization of the equivalent photon

(equivalent electron) approximation in quantum electrodynamics

(Weizsaker-Williams .... Cabibbo-Rocca). This was done in the paper

with the Altarelli Parisi equation.



An alternative derivation of all results of current interest for the Q2

behavior of deep inelastic structure functions is possible. In this

approach all stages of the calculation refer to parton concepts and offer a

very illuminating physical interpretation of the scaling violations. In our

opinion the present approach, although less general, is remarkably

simpler than the usual one since all relevant results can be derived in a

direct way from the basic vertices of QCD, with no loop calculations

being involved (the only exception is the lowest order expression for the

running coupling constant which we do not rederive).



The paper was very successful.

The paper was very clearly written: it was written by Guido, not by

myself ;-) It was really pedagogic.

The most important result of the paper was not the construction of a

practical way to compute scaling violations in deep inelastic scattering.

It was already done using the Mellin transformation. The most

important point was to shift the focus from Wilson operator expansion

to resolution dependent effective number of partons.

It was more than a computation: it was a shift in the language we use.

The Drell-Yan process pp→ µ+µ− + · · · could be not studied by a

Wilson operator expansion. This is also true for jet production in

hadronic collisions. They can be studied by factorizing the amplitude

for the process in a part containing the effective parton distribution at

the relevant energy and the hard scattering that could be treated in

perturbation theory, but this is another story.




