The discovery of the W and Z bosons at the CERN proton – antiproton collider

Luigi Di Lella Phys. Dept., University of Mainz

- § **Discovery of Neutral – Current neutrino interactions**
- § **The proton – antiproton collider**
- § **UA1 and UA2 detectors**
- § **Discovery of the W and Z bosons**
- § **Measurement of W and Z properties**

The rise of particle physics, Rome, 23-24 September 2024

1973: Discovery of neutral – current neutrino interactions

 $v_{\mu}+N \rightarrow v_{\mu}+hadrons$ $\overline{v_u} + N \rightarrow \overline{v_u} + hadrons$

 the first experimental evidence for the weak neutral boson *Z* **predicted by the electro-weak theory.**

First measurement of the weak mixing angle θ_W **from the cross-section ratio**

$$
\frac{\sigma(NC)}{\sigma(CC)} = \frac{\sigma[\nu_{\mu}(\overline{\nu_{\mu}}) + N \rightarrow \nu_{\mu}(\overline{\nu_{\mu}}) + hadrons]}{\sigma[\nu_{\mu}(\overline{\nu_{\mu}}) + N \rightarrow \mu^{-}(\mu^{+}) + hadrons]}
$$

first quantitative prediction of the W[±] and Z mass values:

 $m_{\text{W}} = 60 - 80 \text{ GeV}/c^2$ m_z = 75 – 95 GeV/c²

The ideal machine to produce and study the W and Z bosons: a high-energy e^+e^- collider

$$
e^+e^- \to Z \qquad \qquad e^+e^- \to W^+W^-
$$

still far in the future in the 1970's (first operation of LEP in 1989)

In the 1960s, all experiments with neutrino beams had observed events with final states consisting of hadrons only – all interpreted as background from neutrons produced in v_{μ} or \overline{v}_{μ} CC interactions near the end of the shielding wall, with the μ^{\pm} missing the detector.

1964: Gilberto Bernardini reporting in the CERN auditorium results from neutrino experiments presented at the 1963 HEP Conference

True ratio is $\sim 20\%$

- **1964: André Lagarrigue (Ecole Polytechnique, Paris) proposes to build a large-volume bubble chamber (named "Gargamelle"), filled with heavy liquid, to be installed on the neutrino beam from the CERN 26 GeV Proton Synchrotron (PS)**
- **1965 – 1970: Construction in Saclay, followed by installation at CERN**

During installation Inside Gargamelle

Cylindrical volume, length 4.8 m, diameter 1.8 m; Horizontal magnetic field of 2 T orthogonal to beam axis; Filled with liquid Freon-13 (CF_3Br) : density 1.5 g/cm³, radiation length 11 cm, mean nuclear interaction length 78 cm.

1971: Start data taking with v_{μ} and \overline{v}_{μ} beams (energy \sim 1 – 10 GeV)

Gargamelle at CERN today

The Gargamelle collaboration

Aachen – Brussels – CERN – Ecole Polytechnique, Paris – Milano – Orsay – UC London

December 1972: observation of an event consisting of a single electron only from data taken with the \overline{v}_{μ} **beam**

Electron energy 385 ± 100 MeV Electron angle to beam axis 1.4° ± 1.4°

Consistent with $\overline{v}_{\mu} - e^-$ **elastic scattering, as expected from the electroweak theory**

A v_{μ} interaction with only hadrons in the final state

- Clean 3 prong event
- § Final state has only identified hadrons
- Total visible energy $\sim 6 \text{ GeV}$

Sketch of a neutron background event The neutron is produced by a v_{μ} CC interaction with the µ**[−]** and all other final-state particles missing the detector

Neutron interactions in the detector can be measured by looking at v_μ CC interactions occurring near the chamber entrance

The visible energy from neutron interactions in the detector is mostly < 500 MeV

Distribution fall-off as expected from neutron mean interaction length

Events with only hadronic final states Visible energy > 1 GeV

Event distribution uniform along the beam direction as expected for neutrino interactions

1976: the shortcut to W and Z production (presented at the Neutrino 76 conference in Aachen)

PRODUCING MASSIVE NEUTRAL INTERMEDIATE VECTOR BOSONS WITH **EXISTING ACCELERATORS*)**

C. Rubbia and P. McIntyre

Department of Physics, Harvard University, Cambridge, Massachusetts 02138 and

D. Cline

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

Presented by C. Rubbia

Abstract: We outline a scheme of searching for the massive weak boson ($M = 50 - 200 \text{ GeV}/c^2$). An antiproton source is added either to the Fermilab or the CERN SPS machines to transform a conventional 400 GeV accelerator into a $p\bar{p}$ colliding beam facility with 800 GeV in the center of mass (E_{eq} = 320,000 GeV). Reliable estimates of production cross sections along with a high luminosity make the scheme feasible.

Dominant W and Z production processes at a proton – antiproton collider:

 $u + \overline{d} \rightarrow W^{+} \hspace{1cm} \overline{u} + d \rightarrow W^{-} \hspace{1cm}$ Cross-sections calculable from $u + \overline{u} \rightarrow Z$ $d + \overline{d} \rightarrow Z$

electroweak theory + knowledge of proton structure functions

§ **Energy requirements:**

 proton (antiproton) momentum at high energies is carried by gluons (~ **50**%**) and valence quarks (antiquarks) (**~ **50**%**)**

 $\frac{1}{6}$ (proton momentum) **On average:** quark momentum $\approx \frac{1}{6}$

collider energy ≈ 6 **x** boson mass $\approx 500 - 600$ GeV

§ **Luminosity requirements:**

 Inclusive cross-section for $\overline{p} + p \rightarrow Z +$ **anything at ~600 GeV:** $\sigma \approx 1.6$ **nb Branching ratio for** $Z \rightarrow e^+e^-$ **decay** $\approx 3\%$

$$
\sigma(\overline{p}p \to Z \to e^+e^-) \approx 50 \text{ pb} = 5 \times 10^{-35} \text{ cm}^2
$$

Event rate = L σ $[s^{-1}]$ (L \equiv luminosity)

1 event / day \Rightarrow L \approx 2.5 **x** 10^{29} cm² s⁻¹

CERN accelerators in 1976

- § **26 GeV proton synchrotron (PS) in operation since 1959**
- § **450 GeV proton synchrotron (SPS) just starting operation**

A view of the CERN SPS

To achieve luminosities $\geq 10^{29}$ cm⁻² s⁻¹ need an antiproton source **capable of delivering once per day** 3×10^{10} \overline{p} **distributed into few (3 – 6) tightly collimated bunches within the angular and momentum acceptance of the SPS**

Antiproton production:

Number of antiprotons / **PS cycle OK but phase space volume too large by a factor** $\geq 10^8$ **to fit into SPS acceptance even after acceleration to the injection energy of 26 GeV**

must increase the antiproton phase space density by $\geq 10^8$ **before sending them to the SPS ("cooling")**

"Stochastic" cooling

(invented at CERN by Simon van der Meer in 1972)

Example: cooling of the horizontal motion

In practice, the pick-up system measures the average distance from central orbit of a group of particles (depending on frequency response)

Independent pick-up – kicker systems to cool:

- § **horizontal motion**
- § **vertical motion**
- **longitudinal motion (decrease of** $\Delta p/p$ **)** (signal from pick-up system proportional to Δp)

A few initial recommendations by the CERN Research Board

November 1976: Recommendation to carry out an experiment on proton cooling: Initial Cooling Experiment (ICE) Test cooling of 2 GeV protons in a storage ring built from components of a dismantled ring used to measure the muon g-2

May 1978 : The ICE group reports the achievement of successful stochastic cooling Recommendation to go ahead with pp beams in the SPS (SppS)

June 1978: Approval of proposal P92, becoming the UA1 experiment (UA1 : Underground Area 1)

> **Concern that the inclusion of a second underground area at another intersection region may not be possible due to budgetary limitations**

December 1978: Resources for a second underground area are found Example 3 Approval of proposal P93, becoming UA2

The CERN Antiproton Accumulator (AA) 3.5 Gev/**c large-aperture ring for antiproton storage and cooling**

(during construction)

AA operation

The first pulse of 7×10^6 p has been injected

Precooling reduces momentum spread

First pulse is moved to the stack region where cooling continues

Injection of $2nd$ \bar{p} pulse 2.4 s later

After precooling 2nd pulse is also stacked

After 15 pulses the stack contains $10^8 \bar{p}$

After one hour a dense core has formed inside the stack

After one day the core contains enough \bar{p} 's for transfer to the SPS

The remaining \bar{p} 's are used for next day accumulation

Sketch of the CERN accelerators in the early 1980's

1986 – 90: add another ring ("Antiproton Collector" AC) around the AA – larger acceptance for single \overline{p} **pulses** $(7 \times 10^7 \bar{p} / \text{pulse} \implies \text{~tenfold increase of stacking rate})$

Proton – antiproton collider operation, 1981 - 90

1991: end of collider operation

UA1 detector

UA1 detector during assembly

UA2 Detector 1981 - 85

**Central region: tracking detector ("vertex detector");
"pre-shower" detector (tungsten cylinder 1.5** X_0 **thick + MWPC) "pre-shower" detector (tungsten cylinder 1.5** X_0 **thick + MWPC) electromagnetic and hadronic calorimeters (** $\Delta\theta$ **=10^O,** $\Delta\phi$ **=15^O) no magnetic field**

20° – 40° regions : toroidal magnetic field; tracking detectors; "pre-shower" detector + electromagnetic calorimeter.

No muon detector

UA2 detector during assembly

Electron identification

Calorimeter requirements (UA1, UA2) : energy deposition consistent with an isolated electron (fraction of energy deposited in the electromagnetic calorimeter > 90%, limited shower lateral size).

- • **UA1, UA2: isolated track pointing to the calorimeter energy cluster.**
- • **UA1: track momentum consistent with energy deposition.**
- • **UA2: "preshower" detector in front of the e.m. calorimeter to measure the track – associated energy in a MWPC located after a high-Z converter.**

Muons (UA1 only)

- • **Tracks with energy deposition in calorimeters consistent with energy loss by ionization, detected in muon chambers.**
- • **Track momentum measurement from curvature in magnetic field; momentum measurement ~10 times less precise than electron energy measurement in calorimeter.**

a) CENTRAL
CALORIMETER **GeV** C₅ CONVERTER PROP-DRIFT 2 DRIFT 1 10 cm 10 cm VERTEX

UA2

Electron from $Z \rightarrow e^+e^-$ decay

Most likely, conversion of a high-energy photon in the preshower converter

W discovery

Dominant decay mode (~70%) $W \rightarrow q \overline{q'}$ \rightarrow two hadronic jets ovewhelmed by **two-jet background from QCD processes ⇒ search for leptonic decays:**

 $W^+ \rightarrow e^+ + v_e$ $W^+ \rightarrow \mu^+ + v_\mu$ (and charge-conjugate decays) (UA1, UA2) (UA1 only)

Expected signal from $W \rightarrow e \vee$ **decay:**

- large transverse momentum (p_T) isolated electron
- \blacksquare **p**_T distribution peaks at $m_W/2$ ("Jacobian peak")
- § **large missing transverse momentum from the undetected neutrino**

(W produced by quark-antiquark annihilation, e.g. $u + d \rightarrow W^+$, is almost collinear with beam axis; decay electron and neutrino emitted at large angles to beam axis have large p_T)

NOTE

Missing longitudinal momentum cannot be measured at hadron colliders because of large number of high-energy secondary particles emitted at very small angles inside the machine vacuum pipe

Missing transverse momentum $\overrightarrow{(p_T}^{\text{miss}})$

- **Associate momentum vector** \overrightarrow{p} **to each calorimeter cell with energy deposition > 0**
- **Direction of** \overrightarrow{p} **from event vertex to cell centre**
- \vec{p} | = energy deposited in cell
- § **Definition:**

UA1: correlation between electron p_T **and missing** p_T

Six events with large p_T **electron and large missing** p_T **opposite to electron** p_T **consistent with** $W \rightarrow e \vee$ **decay** (result announced at a CERN seminar on January 20, 1983)

$Two UAI W \rightarrow e V events$

EVENT 2958. 1279.

Measurement of the missing transverse momentum

Before the analysis of the first \bar{p} p collider data (1981 – 82), the importance of measuring the missing transverse momentum (p_T^{miss}) had not been fully acknowledged. The lack of full calorimeter coverage in the UA2 detector could introduce unknown systematic errors in the p_T^{miss} measurement.

UA1 – **UA2** comparison of p_T^{miss} distributions in events containing p_T > 15 GeV/c electrons (from all data collected until 1985)

The effect of the incomplete UA2 calorimeter coverage is evident

 $UA2: Six events containing an electron with $p_T > 15 \text{ GeV/c}$$

Result announced at a CERN seminar on January 21, 1983

PHYSICS LETTERS

EXPERIMENTAL OBSERVATION OF ISOLATED LARGE TRANSVERSE ENERGY ELECTRONS WITH ASSOCIATED MISSING ENERGY AT \sqrt{s} = 540 GeV

UA1 Collaboration, CERN, Geneva, Switzerland

Aachen ^a-Annecy (LAPP) ^b-Birmingham ^c-CERN ^d-Helsinki ^e-Queen Mary College, London ^f-Paris (Coll. de France) ^g -Riverside h -Rome i -Rutherford Appleton Lab. i -Saclay (CEN) \tilde{k} -Vienna \tilde{l} Collaboration

Volume 122B, number 5.6

PHYSICS LETTERS

17 March 1983

OBSERVATION OF SINGLE ISOLATED ELECTRONS OF HIGH TRANSVERSE MOMENTUM IN EVENTS WITH MISSING TRANSVERSE ENERGY AT THE CERN _{Pp} COLLIDER

The UA2 Collaboration

^a Laboratorium für Hochenergie physik. Universität Bern, Sidlerstrasse 5, Bern, Switzerland

b CERN. 1211 Geneva 23. Switzerland

^C Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark

d Laboratoire de l'Accélérateur Linéaire, Université de Paris-Sud, Orsay, France

^e Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, Sezione di Pavia, Via Bassi 6, Pavia, Italy

^f Centre d'Etudes nucléaires de Saclay, France

UA1: observation of $Z \rightarrow e^+ e^-$

(May 1983)

Two energy clusters $(p_T > 25 \text{ GeV})$ **in electromagnetic calorimeters; energy leakage in hadronic calorimeters consistent with electrons**

Isolated track with $p_T > 7$ **GeV pointing to at least one cluster**

Isolated track with $p_T > 7 \text{ GeV}$ **pointing to both clusters**

$UA1 Z \rightarrow e^+ e^-$ event

EVENT 6500, 222.

Invariant Mass of Lepton pair (GeV/c²)

UA2: observation of $Z \rightarrow e^+ e^-$ **(June 1983)**

(stat) (syst)

One of the 8 events : a $Z \rightarrow e^+e^- \gamma$ **decay with a hard photon (24 GeV) well separated from the nearer electron.**

Estimated probability from radiative corrections: $\sim 1/200 \text{ Z} \rightarrow e^+e^-(\gamma)$ decays.

Nevertheless, several theoretical papers were published interpreting this event in terms of new physics beyond the Standard Model.

BEWARE OF STATISTICAL FLUCTUATIONS !

PHYSICS LETTERS

EXPERIMENTAL OBSERVATION OF LEPTON PAIRS OF INVARIANT MASS AROUND 95 GeV/ c^2 AT THE CERN SPS COLLIDER

UA1 Collaboration, CERN, Geneva, Switzerland

Aachen a -Annecy (LAPP) b -Birmingham c -CERN d -Helsinki e -Queen Mary College, London f -Paris (Coll. de France) $g - R$ iverside $h - R$ ome $i - R$ utherford Appleton Lab. $j - Saclav$ (CEN) $k - V$ ienna h Collaboration

Volume 129, number 1,2

PHYSICS LETTERS

15 September 1983

EVIDENCE FOR $Z^0 \rightarrow e^+e^-$ AT THE CERN $\bar{p}p$ COLLIDER

The UA2 Collaboration

^a Laboratorium für Hochenergiephysik, Universität Bern, Sidlerstrasse 5, Bern, Switzerland

^b CERN. 1211 Geneva 23, Switzerland

^c Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark

^d Laboratoire de l'Accélérateur Linéaire, Université de Paris-Sud, Orsay, France

e Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, Sezione di Pavia, Via Bassi 6, Pavia, Italy

^t Centre d'Etudes Nucléaires de Saclay, France

W → **e v** : results from 1982 – 85 data **"transverse mass" (m_T) distribution**

m_T: invariant mass calculated using electron and neutrino momentum components orthogonal to beam axis (m_T does not depend on W p_T)

UA2: $m_w = 80.2 \pm 0.8$ (stat) ± 1.3 (syst) GeV/c²

Charge asymmetry in $W \rightarrow e \vee$ **decay**

In the W rest frame:

Electron (positron) angular distribution:

$$
\frac{dn}{d\cos\theta^*} \propto \left(1 + q\cos\theta^*\right)^2
$$

 $q = +1$ for positrons; $q = -1$ for electrons q* **= 0 along antiproton direction**

W± polarization along antiproton direction (consequence of $V - A$ coupling)

W transverse momentum (\vec{p}_T^W)

 $\mathbf{p}_T^W \neq 0$ because of initial-state gluon **radiation**

§ *p***^T W equal and opposite to total transverse momentum carried by all hadrons produced in the same collision:**

$$
\vec{p}_{T}^{\ \ W}=-\sum_{hadrons}\vec{p}_{T}
$$

• p_T ^W distribution can be predicted from QCD

Z à **e+ e− : UA1 results, 1982 – 85 data**

Z → $e^+ e^-$ **:** m_z = 93.1 ± 1.0(stat) ± 3.1(syst) GeV/c²

Z à **e⁺ e[−] : UA2 results, 1982 – 85 data**

 m_z **= 91.5 ± 1.2**(stat) **± 1.7**(syst) GeV/c²

Production cross-section X decay branching ratio at $\sqrt{s} = 630 \text{ GeV}$

$$
\sigma_W B(W \to ev) = 0.60 \pm 0.05 \pm 0.09 \text{ nb} \quad \text{(UA1)}
$$

0.59 \pm 0.05 \pm 0.07 \text{ nb} \quad \text{(UA2)}
stat. syst.
Theory : 0.45^{+0.14} nb

$$
\sigma_Z B(Z \to e^+ e^-) = 73 \pm 14 \pm 11 \text{ pb}
$$
 (UA1)
 $73 \pm 15 \pm 10 \text{ pb}$ (UA2)
stat. syst.
 Theory: $51^{+16}_{-10} \text{ pb}$

UA2 detector 1987 – 90

- § **Tenfold increase of collider luminosity**
- **Full calorimetry down to** \sim **5°** \Rightarrow improved measurement of missing p_T
- § **No magnetic field, no muon detectors**

UA2 detector 1987 – 90

p_T^{miss} **miss distribution in the UA2' detector**

Events containing an electron with $p_T > 15$ GeV/c

Events containg an electron with $p_T < 11$ GeV/c (mostly events without outgoing neutrinos)

UA2: precise measurement of $\frac{m_{\rm W}}{m_{\rm Z}}$

(mass ratio has no uncertainty

from calorimeter calibration) 2065 W \rightarrow **e** \vee **events with the electron** in the central calorimeter ($\theta = 90^\circ \pm 50^\circ$)

Distribution of "transverse mass" m_T

(m_T : invariant mass using only the e and v momentum components normal to beam $axis -$ the longitudinal component of the v momentum cannot be measured at hadron colliders)

Fit of the distribution with m_W as fitting parameter:

 $m_W = 80.84 \pm 0.22 \text{ GeV/c}^2$

CONCLUSIONS

The CERN Proton – Antiproton Collider:

initially conceived as an experiment to detect the W^{\pm} **and Z bosons; in the end, a general – purpose accelerator facility exploring hadron collisions at centre-of-mass energies an order of magnitude larger than those previously available.**

Among the main physics results:

- § **W[±] and Z detection and studies (tests of the electroweak theory)**
- \blacksquare study of hadronic jets and photons at high p_T (tests of perturbative QCD)
- **heavy flavour physics (first indirect evidence of** $B^{\circ} \overline{B}^{\circ}$ **mixing by UA1)**

The prevailing opinion before the first operation of the CERN \bar{p} p Collider: **proton – proton (and antiproton – proton) collisions are "DIRTY", "COMPLICATED" and "DIFFICULT TO INTERPRET"**

The physics results (and those from the Fermilab \overline{p} **p collider at 1.8 TeV) have shown that this pessimistic view is wrong if the experiments are designed to look at the basic "physics building blocks":**

- \blacksquare hadronic jets at large p_T (representing quarks, antiquarks, gluons)
- § **leptons**
- § **photons**
- § **missing transverse momentum (neutrinos, other possible weakly interacting particles)**

THE SUCCESS OF THE CERN PROTON – ANTIPROTON COLLIDER HAS OPENED THE ROAD TO THE LHC