

Electron analysis – HERD beam test SPS2023

Pietro Betti "We should discuss later" "We should publish soon"

Analyzed files

- 250 GeV: run 302
- 200 GeV: run 305, 310, 311 (noise run 311)
- 150 GeV: run 303
- 100 GeV: run 312
- 50 GeV: run 304
- 20 GeV: run 313

Beam Test Geometry - Calorimeter

3

- LYSO density \sim 7,1 g/cm^{\sim}3
- Carbon fiber density \sim 1.65 g/cm \textdegree 3

Beam Test Geometry – all detectors

4

Calorimeter Calibration with muons

Calorimeter Calibration

- 5 GeV muons scan at PS
- Only 3x3 CALO core is considered

Event selection

- Select events with threshold on total energy release
	- Event in Cube 3-18 if Mean 0 and Mean 1 above thresholds
	- Event in Cube 0-2 and 19-20 if Mean $\,0'$ and Mean $\,1'$ above thresholds

• Fit of Landau convolute with Gaussian on muons MIP histograms

LanGau Fit on MIP real data • Fit of Landau convolute with Gaussian on muons MIP histograms

Muons simulations

- Uniform beam of muons that cover the 3x3 CALO core
	- No tracker information (beam distribution information) at PS
	- Muons beam was wide and covered multiple crystals

$ADC \rightarrow GEV$ - iteration 0

- Landau fit on MC muons histograms without digitization
- First estimation of MIP \rightarrow GeV

Digititice MC muons using MIP \rightarrow ADC from real data and MIP \rightarrow GeV from Landau

- Compared new MIP ADC peaks with the tue ones from real data
- There big differences \rightarrow a new iteration is needed

MIP MC

- Calibrated MC digitized MIP in GeV
- Fit LanGau to estimate new MIP \rightarrow GeV conversion factor

$ADC \rightarrow GEV$ - iteration 1

Much better! \bullet

$ADC \rightarrow GEV$ - iteration 2

- Not significative improvement respect to prior iteration
- We can stop here our calibration procedure

Simulation configuration

- Beam divergence only along y axis
- Beam uniform distribution
- Single energy beam
- Pure electron beam

Digitization

Digitization

- Conversion parameters used to digitize and calibrate
- Noise form pedestal events
- \bullet Low-gain noise = high-gain noise since no low-gain pedestal events acquired

Digitization – Gain change jump

- "hole" between high-gain end and lowgain start
- Due to problem in HiDRA-2 chip ("the HOLD who was not a HOLD")
- Problem that can not be easily corrected in the analysis
- Depends on:
	- Particle rate
	- Energy deposit in the crystal

Digitization - Gain change jump

Beijing 2008 110h final

35000

25000

30000

LPD_ADC[3][3][3] (casisTime>80 && casisTime<620 && LPD_ADC[3][3][0]>100 && gain_LPD[3][3][3]==0}

40000

45000
LPD_ADC[3][3][1]

Digitization – Gain change jump $\sum_{B \in \mathcal{B}(\text{B})} B \text{ is an odd number of } B \text{ is an odd number of } B$

• Try to "model" the effect and add it in simulation

Gaussian fit to estimate the fluctuations of the gap

 35000

36000

 $37000 - 38000$
LPD_ADC[3][3][3]

LPD ADC[3][3][3] (casisTime>80 && casisTime<620 && LPD ADC[3][3][0]>1000 && gain LPD[3][3][3]==1)

DeltaX ~ 35650 - 33800 ~ 1850 ADC Sigma 687 ADC

50 GeV beam

33000

34000

 $140 +$ htemp 34480 Entries Mean $3.763e + 04$ $120⁵$ Std Dev 1387 118.3 Constant 100 Mean $3.614e + 04$ Sigma 603.4 80 ⊧ 60 40 20 30000 $\begin{array}{c} \sqrt{38000} & 40000 \\ \text{LPD_ADC[3][3][5]} \end{array}$ 34000 32000 36000

LPD ADC(3][3][5] {casisTime>80 && casisTime<620 && gain_LPD(3][3][5]==1}

DeltaX ~ 36140 - 34200 ~ 1940 ADC Sigma 603 ADC

100 GeV beam

LPD_ADC[3][3][6] {casisTime>80 && casisTime<620 && gain_LPD[3][3][6]==1}

DeltaX ~ $35400 - 33800 - 1600$ ADC beam Sigma 730 ADC

150 GeV

DeltaX ~ 35180 - 33700 ~ 1480 ADC Sigma 764 ADC

200 GeV beam

Digitization – Gain change jump $\sum_{B \in \mathcal{B}(\text{B})} B^{\text{B}}$ and B^{B} and B^{B} and final

- Assume that the effect is equal for all the channels (wrong)
- If the signal is in low gain
	- Add to the ADC signal a contribution: gain jump gap, smeared as a Gaussian with the sigma of the Gaussian fit

Digitization – Gain change jump Solution

- Jump the hurdle
	- Discard all the events in which at least one cube has a signal inside the gain change gap

Beijing 2008 110h final

Calo-SCD-Beam alignment

Run 302 – 250 GeV

trck_ay:trck_ax {pow(10,trck_chi2)<10 && casisTime>80 && casisTime<620}

31

Run 305+310+311 – 200 GeV

trck_ay+trck_by*719:trck_ax+trck_bx*719 {trck_chi2<1}

Run 303 -150 GeV

trck_ay+trck_by*719:trck_ax+trck_bx*719 {trck_chi2<1} 35 trck_ay+trck_by*719 30 25 20 15 10 -5 -10 -20 -15 -10 -5 trck_ax+trck_bx*719

All events Selection on first cube signal

Run 312 - 100 GeV

Run 304 - 50 GeV

Run 313 - 20 GeV trck_ay+trck_by*719:trck_ax+trck_bx*719 {trck_chi2<1} trck_ay+trck_by*719 40 30 All events Selection on first cube signal 20 10 -10 -25 -20 -15 -10 -5 Ω 36 trck_ax+trck_bx*719

Alignment

- Along Y for all data acquired the first cube is in the same Y position (-5 mm; +25 mm) in the SCD coordinate system
- Sistematic shift along Y to align Calo and SCD
- Along X the beam does not cover all the crystal and does not it any border of the crystal \rightarrow no simple alignment procedure
- In addition we need to check for possible inclination of the calorimeter respect to beam and SCD

Centers Of Gravity (COG) method

• For every layer of the calorimeter computation of $(X;Y)$ coordinate of the center of gravity

$$
x_{reference}^{new} = \frac{1}{E_{tot}} \cdot \sum_{i = layer \text{ crystals}} E_i \cdot (x_i - x_{reference}^{old})
$$
\n
$$
x_{reference}^{new} - x_{reference}^{old} < 100 \text{ um}
$$
\n
$$
y_{reference}^{new} - y_{reference}^{old} < 100 \text{ um}
$$

 \cdot Iterative method

38

COG method result for every energy

- Using the COG method for every beam energy and after osme long tuning for the inclination of the Calo repsect to the beam along the Y axis
- Beam is centered along the X axis at about -0.35 cm respect to the calo center
- Along X selected a region of 5 mm for the beam acceptance (beam is narrow along X)
- Along Y selected a region of 1 cm centered on the calo center

Energy resolution

Energy resolution

- Build histogram of total energy deposit (use layers 0-14 \sim 36.4 X_0)
- Fit with Logarithmic Gaussian (Grupen)

$$
dW = \exp\left\{-\frac{\ln^2[1 - \eta(E - E_{\rm p})/\sigma]}{2s_0^2} - \frac{s_0^2}{2}\right\} \frac{\eta \, dE}{\sqrt{2\pi}\sigma s_0}
$$

• Estimate distribution width using confidence level at 68%

LogGuas fit on real data

LogGuas fit on MC data

E_{m} ergy releases histograms – Data vs. MC

Energy resolution estimation

$$
\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c \left[\oplus \frac{d}{\sqrt[4]{E}} \oplus e \ln(E) \right]
$$

 \bigoplus indicates the quadrature sum

Energy resolution – Data vs MC

energy resolution graph confidence level

- (p2) Calibration uncertainty term bigger in real data (as expected)
- (p0) similar stochastic term: shower fluctuations and sampling effects (simulations seems quite good!)
- $(p1)$ Electronic noise effect bigger in simulations than in data (over estimated in digitization or other effects?)

Energy resolution – Data vs MC excluding 20 GeV point

- (p2) Calibration uncertainty term present in real data and not in simulation (as expected)
- $(p1)$ Electronic noise effect bigger in real data (under estimated in simulations?)
- (p0) stochastic term: shower fluctuations and sampling effects bigger in simulations (since electronics noise term is smaller?)

Energy linearity - Data

Non linearity less than ~1%

linearityGraph

Energy linearity – Data vs MC

linearityGraph

56

Energy linearity – Data vs MC excluding 20 GeV point

linearityGraph

Energy linearity – excluding 20 GeV point

Real data **Simulations**

Not considered effects

• Geometry

- Slightly different density of the crystals
- Uncertainty on material budget between Calo and beam pipe
- Uncertainty on Calo inclination respect to beam
- **Beam**

●

- Simulated uniform profile of beam
- Beam divergence only along y axis
- Uncertainty on beam energy?
- Hadron contamination
- Other effects
	- Gain jump effect assumed equal for all the channels for all the energies
	- Calibration uncertainty
	- Effect of different signal due to "generation point" of scintillation photons in the crystal (Chinese article)
	- Physics list used in simulation
	- Quenching effect (seems to have no impact on energy resolution from Paolo's preliminary studies)
	- Noise from pedestal events
	- Pedestal shift correction effect on energy resolution neglected
	- Reliability of SCD tracks

Noise from pedestal events....

Real 250 GeV electron

Simulated 250 GeV electron

Real 250 GeV electron

Simulated 250 GeV electron

Beam profile

trackSelectionAlgoSelected Top

the company's company of the company's

 -0.5

 -0.4

 -0.3

 -0.6

Entries

Mean x

Mean y

 0.6

 0.4

 0.2

 Ω

 -0.2

 -0.4

 -0.6

 -0.8

 -0.8

 -0.7

150 GeV 200 GeV 250 GeV

Signal in function of particle incidence on the crystal - DatahistoEnergy

Signal in function of particle incidence on the crystal - MC

Beam energy

• Energy loss due to synchroton emission (Grupen):

$$
\Delta E = P \cdot \frac{2\pi r}{c} = \frac{e^2}{3\varepsilon_0} \frac{\gamma^4}{r} = 8.85 \cdot 10^{-5} \frac{E^4 \text{ [GeV}^4]}{r \text{ [m]}} \text{ GeV} . \tag{1.88}
$$

Effect of "generation point" of photons in the crystal

Energy resolution for a 21x21x21 HERD calorimeter with isotropic particle electron gun CALO read-out by WLSFs

