

Carlo Gustavino for the X17 working group Catania, 29 May 2024

A new detection set-up to search the X17 boson

Carlo Gustavino

Three significant anomalies have been observed in the in the ³H(p,e⁻e⁺)⁴He, ⁷Li(p,e⁻e⁺)⁸Be, ¹¹B(p,e⁻e⁺)¹²C nuclear reactions. These anomalies consist in an excess of electron-positron pairs emitted at large relative angle. This excess have been interpreted as the signature of a new paricle with mass of about 17 MeV, called **X17 boson**.

Experimental Program

- Study of the ⁷Li(p,e⁻e⁺)⁸Be reaction \rightarrow X17 search.
- Study of the ³He(n,e⁻e⁺)⁴He reaction in a wide energy at the n_TOF facility, using a custom target of ³He at 380 bar → determination of X17 quantic numbers J^π.
- Study of the ²H(p,e⁻e⁺)³He and ²H(n,e⁻e⁺)³H "specular" reactions → probing the protophobic coupling.

⁷Li(p,e⁻e⁺)⁸Be at ATOMKI

The reaction ⁷Li(p,e⁺e⁻)⁸Be allows to selectively populate the 17.64 MeV and 18.15 MeV resonances. The considered transitions are M1 type.

In SM, virtual photons can convert into $e^+e^$ pairs (internal pair convertion, IPC). IPCs decreases smothly with the aperture angle. Typically, BR $e^+e^-/\gamma s=10^{-3}$

⁷Li(p,e⁻e⁺)⁸Be ATOMKI results

Clear counting excess for θ_{e+e} ~140° for E_p populating yje 18.2 resonance No X17 signal at the 17.6 resonance

Re-analysis of old data provide an excess also at 17.6 MeV (See arXiv:2205.07744v1) Re-re-analysis cancelled out again the anomaly at 17.6 MeV

Breaking news: X17 at MEG2

- Next week: MEGII meeting to decide if the analysis procedure is complete for the data "unblinding" for the ⁷Li(p,e⁻e⁺)⁸Be reaction.
- If yes, data will be unblinded--> summer conferences.
- If not, further work required.
- Data are of 2022 at E_R =17.6 MeV (no anomaly at Debrecen).
- Next step run at E_R =18.2 MeV (energy of the ATOMKI anomaly).
- Cockcroft-Walton accelerator presently broken.

Detector Requirements

Detector requirements

- Large angular acceptance
- Reconstruction of e⁻e⁺
 kinematics
- Low sensitivity to photons and neutrons

- 4 large µTPC with 380 x 460 x 30 mm³ active volume → 3D tracking
- 4 planes composed by 32 scintillator bars 3 x 12 x 500 mm³ → trigger
- 1 coil (B = 500 Gauss) → momentum reconstruction

Scintillating bars

So far, modest (but sufficient) performance. To Be done:

- New reflective procedure (Teflon tape).
- Measurement to simulate Gamma flash
- Circuit to prevent possible Gamma flash problem
- Follow solutions adopted by the Foot experiment (using ~same SiPM, bars of 500x20x3 mm³ instead of 500x12x3 mm³)
- Alternative to FERS (difficult to use and to integrate in the acquisition)

PROBLEM: Very long time (>4 months up to now) for the Hamamatsu delivering

Top:Amplitude ratio between the pulses at the ends of a scintillator bar coupled SiPMs.

Botton: Time difference between the two ends of the scintillator bar

<u>The Coil</u>

	solenoide sezione	QUADRATA	CIRCOLARE		
	massa protone (kg)	1,82E-27	1,82E-27	T_e- (MeV)	raggio curvatura (cm)
	massa elettrone (kg)	9,11E-31	9,11E-31	2	16
	velocità elettrone (m/s)	3,00E+08	3,00E+08	3	23
	Carica elettrone (C)	1,60E-19	1,60E-19	4	30
	Campo magnetico (T)	0,05	0,05	5	37
	l (Ampere)	19,9	39,8	6	43
	Lunghezza solenoide (m)	0,5	0,5	7	50
	numero spire	1000	500	8	57
	Mu_0 (permeab, T*m/A)	1,26E-06	1,26E-06	9	63
	lato/diametro solenoide (m)	0,6	0,6	10	70
	lunghezza rame (m)	2400	942	11	77
	rho (Ohm*m)	1,68E-08	1,68E-08	12	83
	sezione rame (m2)	7,07E-06	7,07E-06	13	90
	diametro rame (mm)	3	3	14	97
	resistenza	5,71	2,24	15	103
	voltaggio (V)	114	89	16	110
	potenza (Watt)	2259	3548	17	117
	quantita rame (litri)	17	7	18	123
	spessore solenoide (cm)	1,4	0,6		
	Peso solenoide (kg)	152	60		

Detector requirements

- * 500 Gauss (5x10⁻² Tesla)
- Square 60x60 cm² cross section, 60 cm length)
- & 4 module with 15 cm length.
- Prototype wheight ~80 kg
- Towards a standard cylindrical monolithic magnet
- Test at LNL needed to evaluate momentum measurement with uRwells

Simulation

Detector performance Vs mechanical parameters

Simulation of reconstructed Vs true aperture angle of e^-e^+ pairs and P_T of electrons (positrons). Main worsening due to the target extension (2 cm). Negligible worsening due to the carbon sphere and the μ Rwell strip pitch. Transverse momentum reconstruction at the level of 10-20%.

10 12 14 16

18 2 Pt (MeV)

target

60 80 100

60 80 100 120 140 160 Relative angle

120 140 160 Belative and

Test beam at Debrecen

- ⋆ Trigger= cube ⊗ scint bar plane
 ⋆ E_p= 450 keV
- $* I_p = \mu A$
- ✤ Trigger rate =0,5 Hz
- 3D track reconstruction
- * direction of tracks (target "shadow")
- Track slope
- Instrumental parameters (cathode electric field etc.

Example of a real electron track reconstructed with the large μ Rwell operated in μ TPC mode. The electron is produced by the ⁷Li(p,e⁻e⁺)⁸Be reaction at E_p =0.450 MeV.

uRwell results

Encountered problems:

- 1) Read out with capacitative sharing (big clusters but small signals)
- \rightarrow No capacitative sharing for X17.
- 2) Bad trasmission of signal (high noise level of even strips)
- \rightarrow New design for readout system
- 3) Too low resistivity of DLC layer (small operating voltage, small amplification)
- $\rightarrow \sigma_{\text{DLC}}$ >100 M Ω /square
- 4) ... Minor problems

In conclusion, we understand everything. Altough we foresees to increase S/N of a factor 4, the main concern is the intrinsic small signals of uRwell. Switch to μ MEGAS can be a solution (big signal, saturating APV25 electronics) but..

BIG PROBLEM: ONLY 1 producer for all the MPGD (Rui De Oliveira, CERN). Delivery time and costs out of control

The ³He(n,e⁻e⁺)⁴He at n_TOF

Assuming:

X17 vector boson 10 cm³ of 3He at 380 bar (cylinder 2,21 cm long , 2,4 cm diameter: No moderator 0,2 Pulse/second Pot/pulse= 7x10¹² (Check!) Neutron/pulse=1,7x10⁷

570 IPC /day (standard physics, data for ab-initio calculations) 14,38 X17/day

Very long run is needed in dedicated conditions.

Forthcoming activities and conclusion

We must do:

Technical design report

Test at LNGS for gamma-flash Vs SiPM

Circuit to prevent gamma flash saturation (if any)

Test at LNL (Pt resolution with magnet prototype)

Test at CERN (SPS): tracking Vs angle with m.i.p.s DRD1 period: 15 september 2 October

Test at CERN (EAR2, end of October). (in)sensitivity to gammas and neutrons.

Simulation of detector setup at n_ToF.

From the collaboration we need:

Main power for laboratory tests and beam tests.

Simulation of the n_Tof measurement ³He(p,e⁻e⁺)⁴He with pressurized target

Technology development of dense, thin and "nake" targets of ³He, ²H, ⁷Li

Simulation of the ${}^{2}H(p, e^{-}e^{+}){}^{3}He$ measurement (based on the M.Viviani results)

Advanced ERC

LNGS beam request

From INFN (and n_ToF) we need money NOW (Last Train!)

Sipm Hamamatsu (extremely urgent)

Scint bars Scionix (urgent)

Chambers (microMEGAS or uRwell in any case only one producers, extremely urgent, see above)) ³He (???)

FERS2 (test with CAEN needed, to convince me) (Not urgent)

APV25 (at the moment, only to be borrowed from other groups).

Final Magnet (probably cylindrical, see above)

~20 liters of ³He