












## **The CYGNO Experiment**

Volume 6 · Issue 1 | March 2022



mdpi.com/journal/instruments ISSN 2410-390X

Fernando Domingues Amaro<sup>1</sup>, Elisabetta Baracchini<sup>2,3</sup>, Luigi Benussi<sup>4</sup>, Stefano Bianco<sup>4</sup>, Cesidio Capoccia<sup>4</sup>, Michele Caponero<sup>4,5</sup>, Danilo Santos Cardoso<sup>6</sup>, Gianluca Cavoto<sup>7,8</sup>, André Cortez<sup>2,3</sup>, Igor Abritta Costa<sup>9</sup>, Rita Joanna da Cruz Roque<sup>1</sup>, Emiliano Dané<sup>4</sup>, Giorgio Dho<sup>2,3</sup>, Flaminia Di Giambattista<sup>2,3</sup>, Emanuele Di Marco<sup>7</sup>, Giovanni Grilli di Cortona<sup>4</sup>, Giulia D'Imperio<sup>7</sup>, Francesco Iacoangeli<sup>7</sup>, Herman Pessoa Lima Júnior<sup>6</sup>, Guilherme Sebastiao Pinheiro Lopes<sup>9</sup>, Amaro da Silva Lopes Júnior<sup>9</sup>, Giovanni Maccarrone<sup>4</sup>, Rui Daniel Passos Mano<sup>1</sup>, Michela Marafini<sup>10</sup>, Robert Renz Marcelo Gregorio<sup>11</sup>, David José Gaspar Marques<sup>2,3</sup>, Giovanni Mazzitelli<sup>40</sup>, Alasdair Gregor McLean<sup>11</sup>, Andrea Messina<sup>7,8</sup>, Cristina Maria Bernardes Monteiro<sup>16</sup>, Rafael Antunes Nobrega<sup>9</sup>, Igor Fonseca Pains<sup>9</sup>, Emiliano Paoletti<sup>4</sup>, Luciano Passamonti<sup>4</sup>, Sandro Pelosi<sup>7</sup>, Fabrizio Petrucci<sup>12,13</sup>, Stefano Piacentini<sup>7,8</sup>, Davide Piccolo<sup>4</sup>, Daniele Pierluigi<sup>4</sup>, Davide Pinci<sup>7,\*®</sup>, Atul Prajapati<sup>2,3</sup>, Francesco Renga<sup>7®</sup>, Filippo Rosatelli<sup>4</sup>, Alessandro Russo<sup>4</sup>, Joaquim Marques Ferreira dos Santos<sup>1</sup>, Giovanna Saviano<sup>4,14</sup>, Neil John Curwen Spooner<sup>11</sup>, Roberto Tesauro<sup>4</sup>, Sandro Tomassini<sup>4®</sup> and Samuele Torelli<sup>2,3</sup> **B. P. Gelli, E. Kemp** 



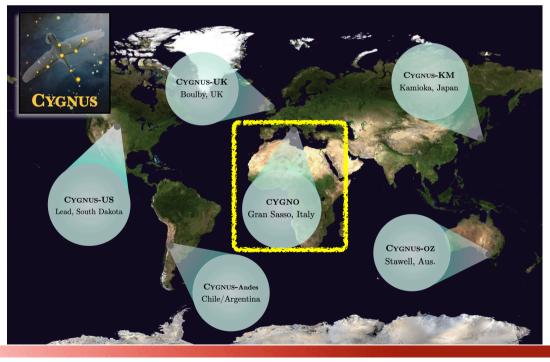








# C/GNC CYGNUS proto-collaboration vision Experiment




#### A multi-site, multi-target Galactic Recoil Observatory at the ton-scale to probe Dark Matter below the Neutrino Floor and measure solar Neutrinos <u>with directionality</u>

 $\label{eq:GNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark \\ matter and neutrinos$ 

S. E. Vahsen,<sup>1</sup> C. A. J. O'Hare,<sup>2</sup> W. A. Lynch,<sup>3</sup> N. J. C. Spooner,<sup>3</sup> E. Baracchini,<sup>4,5,6</sup> P. Barbeau,<sup>7</sup>
 J. B. R. Battat,<sup>8</sup> B. Crow,<sup>1</sup> C. Deaconu,<sup>9</sup> C. Eldridge,<sup>3</sup> A. C. Ezeribe,<sup>3</sup> M. Ghrear,<sup>1</sup> D. Loomba,<sup>10</sup>
 K. J. Mack,<sup>11</sup> K. Miuchi,<sup>12</sup> F. M. Mouton,<sup>3</sup> N. S. Phan,<sup>13</sup> K. Scholberg,<sup>7</sup> and T. N. Thorpe<sup>1,6</sup>

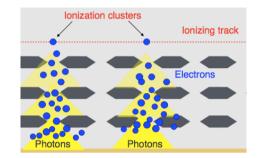
arXiv:2008.12587



Helium/Fluorine gas mixtures at 1 bar

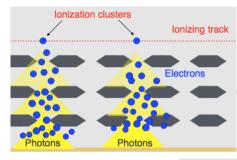
- Sensitivity to O(GeV) WIMP for both SI & SD couplings
- Possibility of switching between higher (search mode) and lower gas densities (improved directionality) for signal confirmation
- Reduced diffusion
  - Through negative ion drift or "cold" gases

#### 3D fiducialization

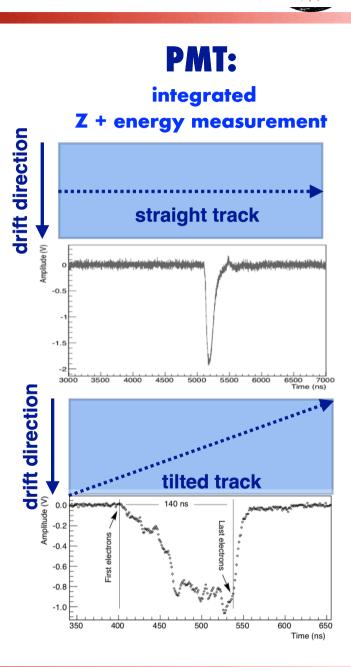

Through minority carriers or fit to diffusion

Directional threshold at O(keV)

Full background rejection at O(keV)




#### JINST 13 (2018) no.05, P05001



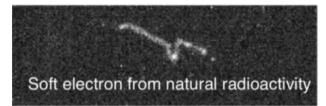

#### <u>He:CF4 @ 1 atm</u> CXGNC Experime CXGNO: 3D optical readout with sCMOS & PMT

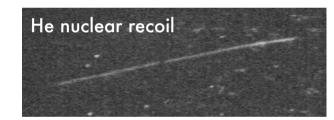
#### JINST 13 (2018) no.05, P05001







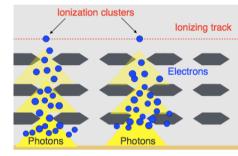

erc


#### He:CF4 @ 1 atm CYGNC CYGNC



## sCMOS:

#### high granularity X-Y + energy measurements







I/3 noise w.r.t. CCDs
 Market pulled
 Single photon sensitivity
 Decoupled from target


Large areas with proper optics

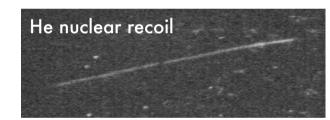
#### JINST 13 (2018) no.05, P05001







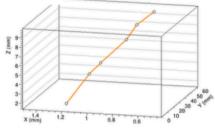


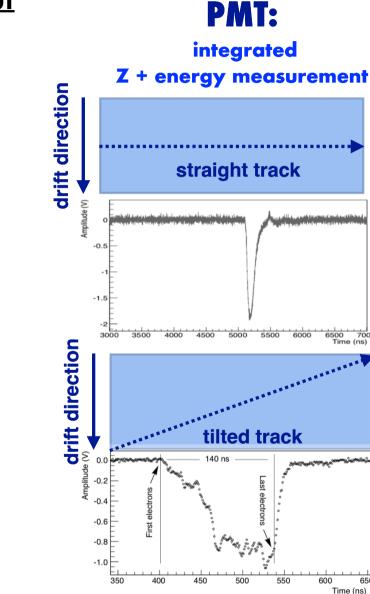


## He:CF4 @ 1 atm CXGNO: 3D optical readout with sCMOS & PMT

# erc

## sCMOS:

#### high granularity **X-Y + energy measurements**



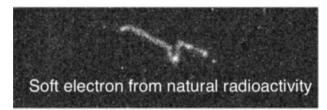

1/3 noise w.r.t. CCDs Market pulled Single photon sensitivity Decoupled from target Large areas with proper optics

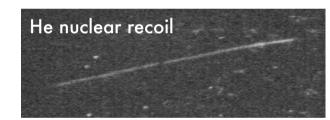
## JINST 13 (2018) no.05, P05001 Ionization clusters Ionizing track ... Photons





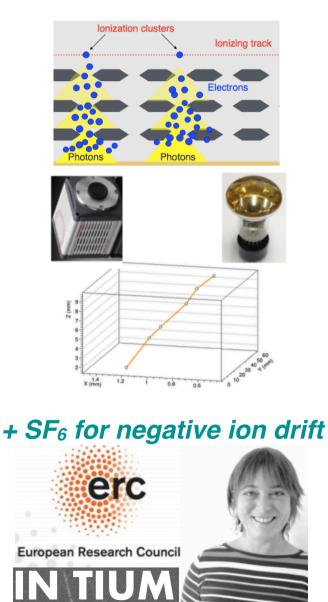


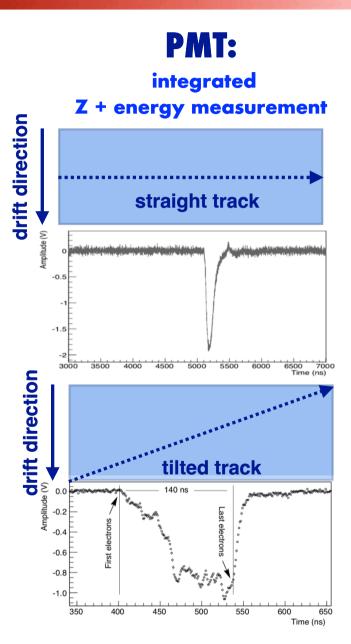

650


#### <u>He:CF4 @ 1 atm</u> CYGNC CYGNC CYGNC: 3D optical readout with sCMOS & PMT



## sCMOS:

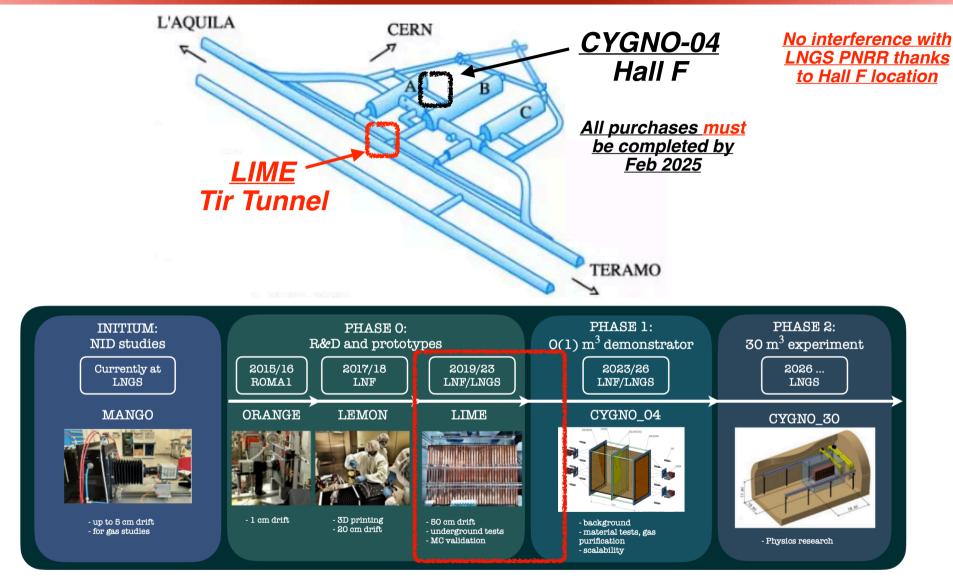

#### high granularity X-Y + energy measurements






I/3 noise w.r.t. CCDs
 Market pulled
 Single photon sensitivity
 Decoupled from target
 Large areas with proper optics

#### JINST 13 (2018) no.05, P05001



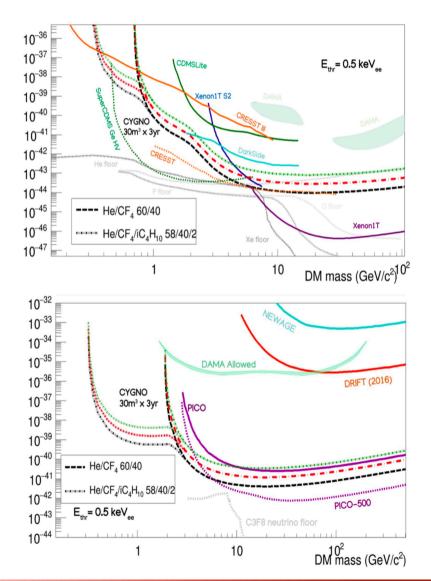




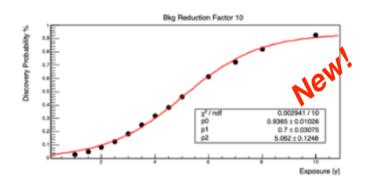

# **C**XGNO timeline



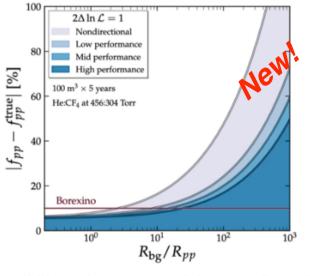



#### PHASE-1 fully funded through ERC Grant




# **Physics goals for CYGNO-30**




### **Direct DM searches**



## Solar neutrino spectroscopy

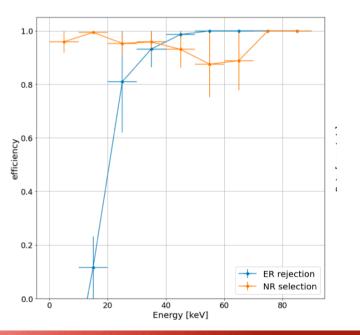


<u>3 sigma pp cycle observation with CYGNO-30 x 3 years</u> with a neutrino energy threshold of ± 50 keV (N.B. Borexino 300 keV)



Possibility to improve precision over Borexino with CYGNO-100 for 5 years




# **PHASE-0** achievements



#### PHASE 0 has been successful in realising its goals

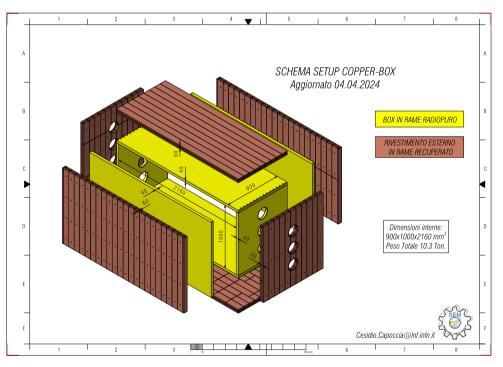
- LIME underground operation proceeding since > 1 year
- Auxiliary systems improved and validated
- Computing infrastructure realised and validated
- External shielding effect on backgrounds validated
- MC simulation validated and unforeen background contamination likely identified
- Preliminary ER/NR discrimination >80% at 20 keV with >90% NR efficiency (LIME AmBe data sample)
- Ongoing work with ML approach indicating possibility of achieving >10<sup>4</sup> ER background rejection at 20 keV with 40% NR efficiency (LIME MC simulation)
- Stable and high quality detector operation achieved with full auxiliary systems configuration

#### Standard cut on single variable

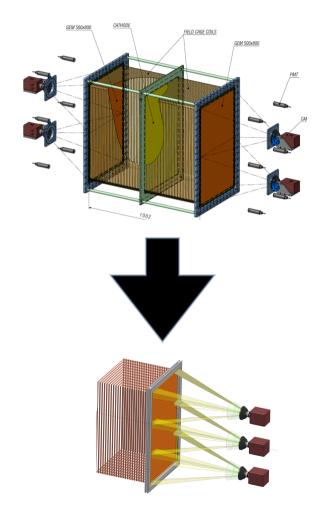


#### Rejection factor with 40% Signal Efficiecny 104 Rejection Factor SDCD CylThick ChargeUnif 10<sup>1</sup> size dEdX dEdA rfc mode abc mode dnn mode ---- Total-ER 10 20 40 Energy [keV]

#### The CYGNO Experiment - LVII Meeting of the LNGS Scientific Committee - Elisabetta Baracchini on behalf of CYGNO collaboration


#### ML techniques



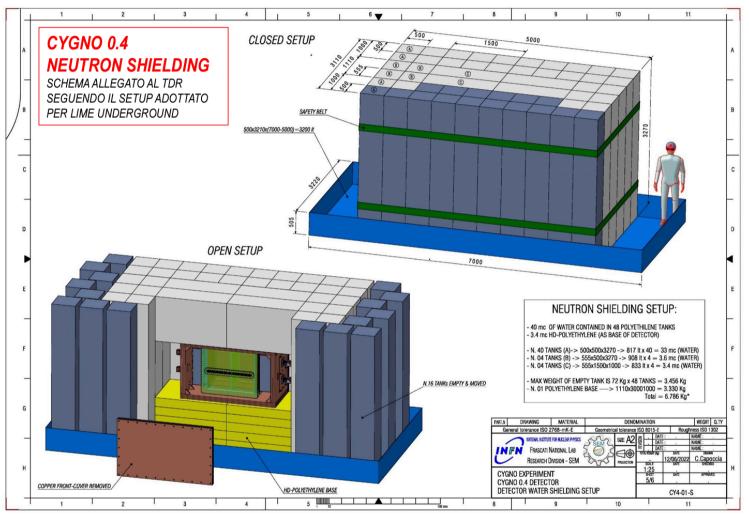

## Towards finalisation of CYGNO-04 detector and Cu shielding technical design



Shielding foreseen to include an internal 4 cm"clean" Cu + 6 cm external "standard" Cu to minimise shielding radioactivity contribution as indicated by preliminary GEANT-4 simulation results



External standard Cu from dismissed Opera Cu (already secured) For "clean" Cu two companies already contacted, final choice depending on actual costs and final results of GEANT-4 simulation



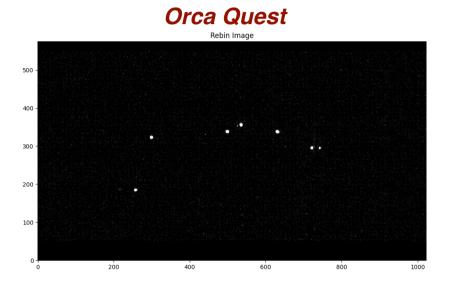

From 2 to 3 cameras per side to maximise LY and granularity while still matching the available fundings



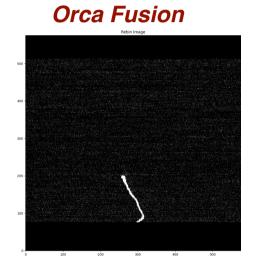
# Towards finalisation of technical design of water shielding tanks

-xperime

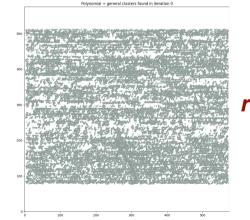



Cygno 15.01.2023 Cesidio.Capoccia@Inf.infn.it

### Same company that provided LIME water shielding to be used


CYGNO XPeriment CYGNO-04 components: sCMOS camera




#### Preliminary comparison with standard reconstruction code optimised on Orca Quest (i.e. CYGNO-04 sCMOS camera)



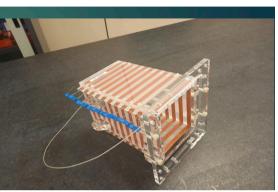




#### Original image



## Clusters found by reconstruction code


# CYGNO CYGNO-04 components: field cage (FC) and cathode



#### "Glued" FC + Cu cathode

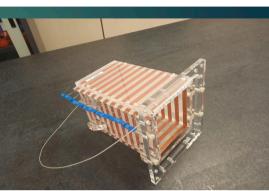
#### FC Characteristics:

- Glued on PVC
- Four indepent panels glued (one per side)
- Electric contact when glued toghether
- Cathode Characteristics:
- Made of well-levigated Copper
- Simple construction



Field cage 100 um PET substrate (70 um) with circuit printed copper bands (30 um)

Highly unstable operations Sparking and luminous spots along FC Degradation of performances with time


# CYGNO-04 components: field cage (FC) and cathode

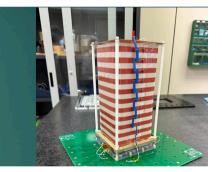


#### "Glued" FC + Cu cathode

#### FC Characteristics:

- Glued on PVC
- Four indepent panels glued (one per side)
- Electric contact when glued toghether
- Cathode Characteristics:
- Made of well-levigated Copper
- Simple construction




Field cage 100 um PET substrate (70 um) with circuit printed copper bands (30 um)

Highly unstable operations Sparking and luminous spots along FC Degradation of performances with time

### "Ethereal" FC + Cu cathode

#### FC Characteristics:

- Rolled up on DELRIN Pillars
- Glued to itself
- Not connected to PVC
- Cathode Characteristics:
  - Made of well-levigated Copper
  - Simple construction



Drift field up to 1.5 kV/cm achieved with no performance issue Long term stability test with 2 kV/cm field ongoing Full performance evaluation ongoing

# CYGNO-04 components: field cage (FC) and cathode



#### "Glued" FC + Cu cathode

#### FC Characteristics:

- Glued on PVC
- Four indepent panels glued (one per side)
- Electric contact when glued toghether
- Cathode Characteristics:
- Made of well-levigated Copper
- Simple construction



Field cage 100 um PET substrate (70 um) with circuit printed copper bands (30 um)

Highly unstable operations Sparking and luminous spots along FC Degradation of performances with time

### "Ethereal" FC + Cu cathode

#### FC Characteristics:

- Rolled up on DELRIN Pillars
- Glued to itself
- Not connected to PVC
- Cathode Characteristics:
  - Made of well-levigated Copper
  - Simple construction

#### "Ethereal" FC + 0.9 um aluminised mylar cathode

- FC Characteristics:
  - Rolled up on DELRIN Pillars
  - Glued to itself
  - Not connected to PVC
- Cathode Characteristics:
  - Thin Aluminium film over a Copper Landing strip
  - Well-streched aluminium film
  - Copper tabs for electric contacts



Drift field up to 1.5 kV/cm achieved with no performance issue Long term stability test with 2 kV/cm field ongoing Full performance evaluation ongoing

Operated for 10 days with drift field at 1.3 kV/cm with no performance issue Full performance evaluation ongoing



# CXGNO personnel & team

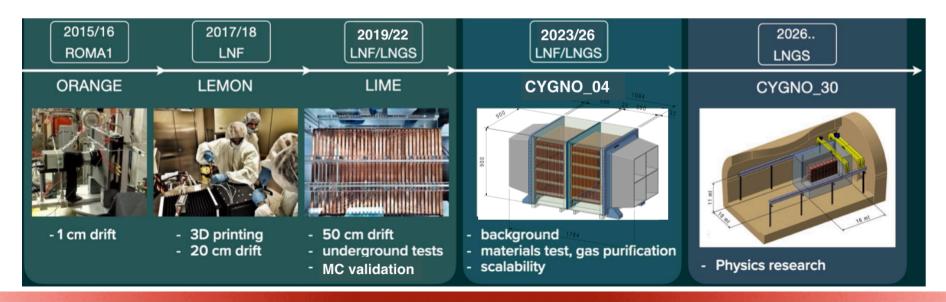


### Including ERC & PRIN project, a total of 24.25 FTE

## 4 italian istitutions

### 5 foreigner institutions from 3 countries




|                            | Institution                            | Qualification     | FTE CYGNO | FTE INITIUM | FTE PRIN |
|----------------------------|----------------------------------------|-------------------|-----------|-------------|----------|
| Baracchini E.              | GSSI & INFN LNGS                       | Professore Ord.   | 0.2       | 0.6         | 0.1      |
| D'Astolfo M.               | GSSI & INFN LNGS                       | PhD               | 1         |             |          |
| Di Giambattista F.         | GSSI & INFN LNGS                       | PhD               | 0.7       |             | 0.3      |
| Fiorina D.                 | GSSI & INFN LNGS                       | Postdoc           | 0.2       |             |          |
| Islam Z. U.                | GSSI & INFN LNGS                       | Postdoc           | 0.5       |             |          |
| Marques D.                 | GSSI & INFN LNGS                       | PhD               |           | 1           |          |
| Prajapati A.               | GSSI & INFN LNGS                       | PhD               |           | 1           |          |
| Torelli S.                 | GSSI & INFN LNGS                       | PhD               |           | 1           |          |
| Benussi L.                 | INFN LNF                               | Ricercatore       | 0.2       | -           |          |
| Bianco S.                  | INFN LNF                               | Primo Ricercatore | 0.2       |             |          |
| Capoccia C.                | INFN LNF                               | Tecnico           | 0.3       |             |          |
| Caponero M.                | INFN LNF                               | Primo Ricercatore | 0.2       |             |          |
| Dané E.                    | INFN LNF                               | Tecnologo         | 0.2       |             |          |
| Dho G.                     | INFN LNF                               | Postdoc           | 0.2       | 0.2         |          |
| Maccarrone S.              | INFN LNF                               | Primo Ricercatore | 0.4       | 0.2         |          |
| Mazzitelli G.              | INFN LNF                               | Primo Ricercatore | 0.5       | 0.4         |          |
| Mazzitem G.<br>Mengucci A. | INFN LNF                               | Tecnico           | 0.1       | 0.4         |          |
| Orlandi A.                 | INFN LNF                               | Tecnico           | 0.1       |             |          |
| Paoletti E.                | INFN LNF                               | Tecnico           | 0.1       |             |          |
| Piccolo D.                 | INFN LNF<br>INFN LNF                   | Primo Ricercatore | 0.5       |             |          |
| Pierluigi D.               | INFN LNF<br>INFN LNF                   | Tecnico           | 0.2       |             |          |
| 0                          |                                        | Tecnico           |           |             |          |
| Rosatelli F.               | INFN LNF                               | Tecnico           | 0.3       |             |          |
| Russo A.                   | INFN LNF                               |                   | 0.2       |             |          |
| Saviano G.                 | INFN LNF                               | Tecn. Ricercatore | 0.2       |             |          |
| Tesauro R.                 | INFN LNF                               | Tecnico           | 0.0       | 1           |          |
| Tomassini S.               | INFN LNF                               | Primo Tecnologo   | 0.2       | 0.1         |          |
| Cavoto G.                  | La Sapienza & INFN Roma1               | Professore Ass.   | 0.3       | 0.1         |          |
| D'Imperio G.               | INFN Roma1                             | Ricercatore       | 0.5       |             |          |
| Di Marco E.                | INFN Roma1                             | Ricercatore       | 0.2       |             |          |
| Iacoangeli F.              | INFN Roma1                             | Tecnologo         | 0.3       |             |          |
| Messina A.                 | La Sapienza & INFN Romal               | Professore Ass.   | 0.6       |             |          |
| Piacentini S.              | La Sapienza & INFN Romal               | Postdoc           | 0.5       | 0.1         |          |
| Pinci D.                   | INFN Roma1                             | Ricercatore       | 0.5       | 0.1         |          |
| Renga F.                   | INFN Roma1                             | Ricercatore       | 0.3       | 0.1         |          |
| Abritta Costa I.           | Roma3 & INFN Roma3                     | Postdoc           | 0.5       |             |          |
| Antonietti R.              | Roma3 & INFN Roma3                     | PhD               | 1         |             |          |
| Meloni P.                  | Roma3 & INFN Roma3                     | PhD               | 1         |             |          |
| Petrucci F.                | Roma3 & INFN Roma3                     | Professore Ass.   | 0.4       |             |          |
| Gregorio R.                | University of Sheffield                | PhD               | 0.2       |             |          |
| McLean A.                  | University of Sheffield                | PhD               | 0.15      |             |          |
| Spooner N.                 | University of Sheffield                | Professore Ord.   | 0.1       |             |          |
| Amaro F. D.                | Universidade de Coimbra                | Ricercatore       | 0.4       |             |          |
| Dos Santos J. M. F.        | Universidade de Coimbra                | Professore Ord.   | 0.3       |             |          |
| Mano R. D. P.              | Universidade de Coimbra                | PhD               | 0.4       |             |          |
| Monteiro C. M. B.          | Universidade de Coimbra                | Professore Ord.   | 0.4       |             |          |
| Roque R. J. C.             | Universidade de Coimbra                | PhD               | 1         |             |          |
| Lopes Junior A.            | Universidade Juiz de Fora              | MSc               | 0.5       |             |          |
| Migliorini M. L.           | Universidade Juiz de Fora              | MSc               | 0.2       |             |          |
| Nobrega R. A.              | Universidade Juiz de Fora              | Professore Ass.   | 0.6       |             |          |
| Pains I. F.                | Universidade Juiz de Fora              | BSc               | 0.5       |             |          |
| Pinero Lopes G. S.         | Universidade Juiz de Fora              | MSc               | 0.2       |             |          |
| Cardoso D. S.              | Centro Brasileiro de Pesquisas Fisicas | MSc               | 0.1       |             |          |
| Lima Junior H. P.          | Centro Brasileiro de Pesquisas Fisicas | Primo Tecnologo   | 0.4       |             |          |
| Oliveira T. A. B.          | Centro Brasileiro de Pesquisas Fisicas | MSc               | 0.1       |             |          |
| Gelli B. P.                | Universidade Estadual de Campinas      | PhD               | 0.25      |             |          |
| Kemp E.                    | Universidade Estadual de Campinas      | Professore Ass.   | 0.25      |             |          |
| Total                      |                                        |                   | 18.45     | 5.4         | 0.4      |
|                            | 1                                      |                   |           |             |          |







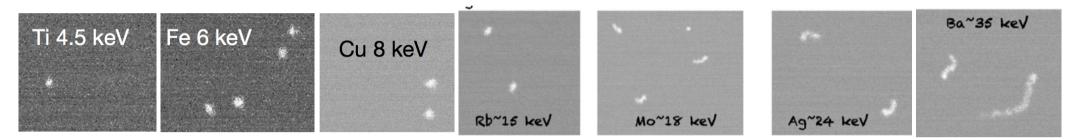
- Development towards CYGNO-04 realisation advancing
  - Infrastructures to be completed in a couple of months
  - Detector and shielding design under finalisation
  - Solution Sector Materials and components identified and construction procedures under test
  - Full background simulation ongoing
  - Detector underground installation foreseen starting from Spring 2025
  - Advancements consistent with TDR schedule







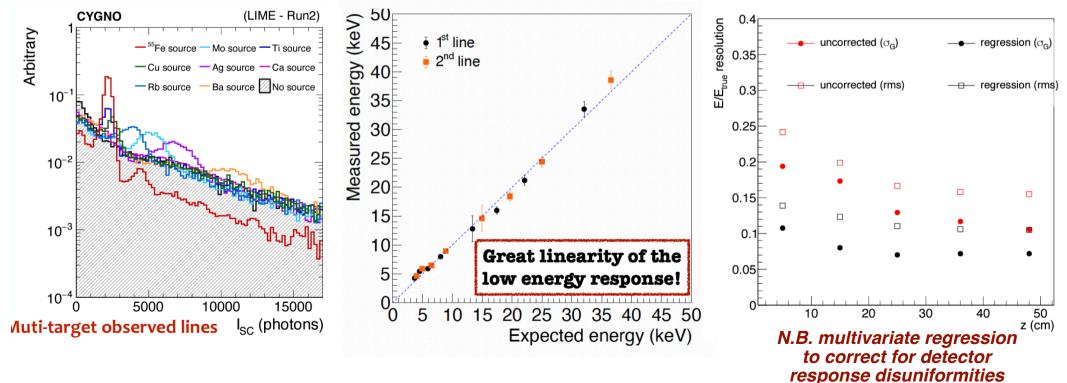
# BACKUP




#### Eur. Phys. J. C 83 (2023) 10, 946

## LIME overground commisioning @ LNF

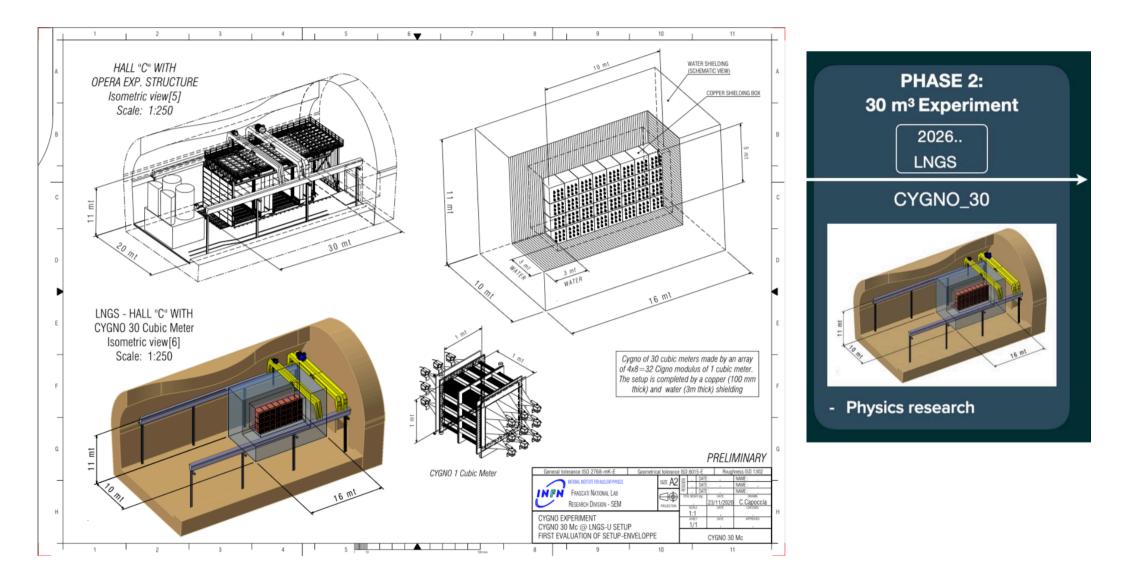



## **Electron recoils calibration**



Multi-source + bkg spectrum

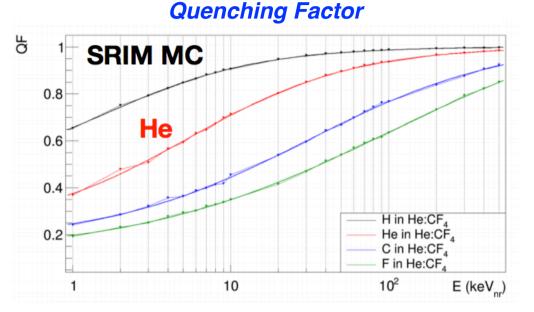
#### Energy response linearity


#### **Energy resolution**

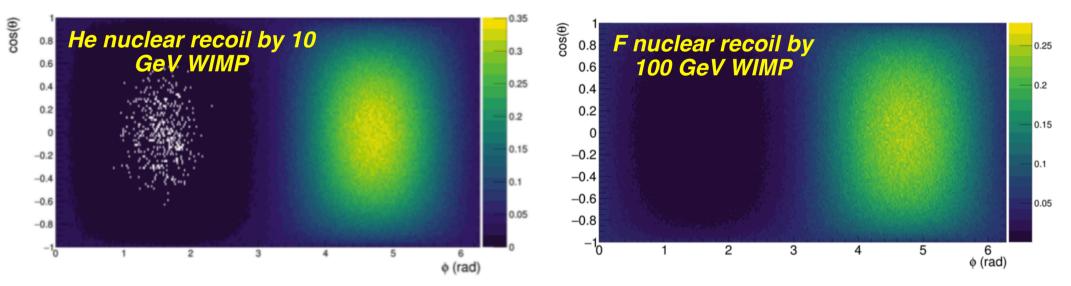




# **C**/**GNO** future







CYGNO Experiment CYGNO PHASE 2 sensitivity evaluation



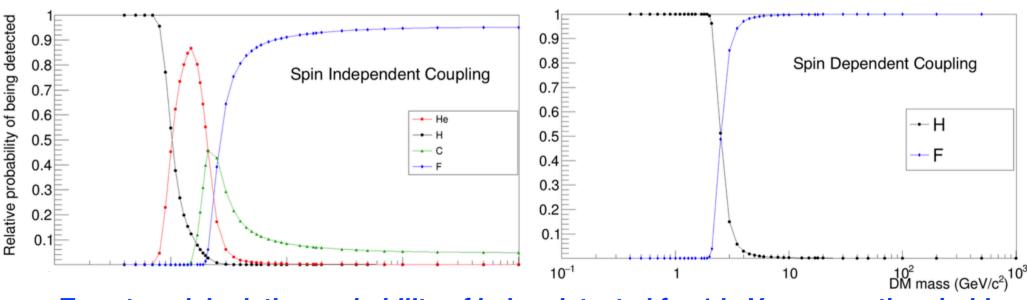
- Use 1 keV<sub>ee</sub> threshold
- Evaluate QF with SRIM
- Introducing angular distribution as discriminating
- Full head/tail recognition
- Using a 30 deg resolution



### Examples of expected measured angular distribution in Galactic coordinates



14


# **EXGNO** CXGNO PHASE 2 sensitivity evaluation

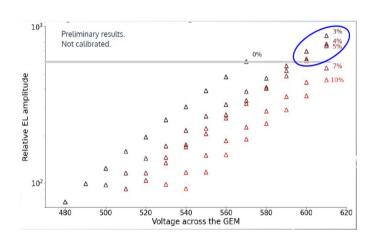


Since CYGNO is a multi-target DM experiment, both the kinematics of the expected DM-nucleus interaction and the expected rate calculation influence the probability of each element to be detected differently as a function of the DM mass

The region of the DM velocity distribution accessible to detection is limited at lower values by the energy threshold and at higher values by the local escape velocity (here taken as 544 km/s)

|    | Minimum<br>detectable DM<br>mass for 0.5 keV <sub>ee</sub><br>energy threshold | Minimum<br>detectable DM<br>mass for 1 keV <sub>ee</sub><br>energy threshold |
|----|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Н  | 300 MeV/c <sup>2</sup>                                                         | 500 MeV/c <sup>2</sup>                                                       |
| He | 700 MeV/c <sup>2</sup>                                                         | I GeV/c <sup>2</sup>                                                         |
| С  | I.4 GeV/c <sup>2</sup>                                                         | I.9 GeV/c <sup>2</sup>                                                       |
| F  | 1.9 GeV/c <sup>2</sup>                                                         | 2.5 GeV/c <sup>2</sup>                                                       |

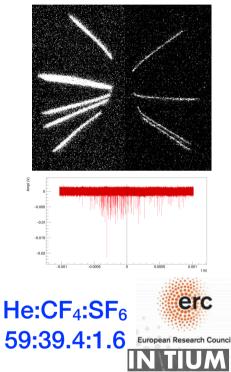



Target nuclei relative probability of being detected for 1 keVee energy threshold



## **R&D developments towards CYGNO 30 m<sup>3</sup>**




#### Improve sensitivity at low < 1 GeV WIMP masses by means of Hydrogen target



#### R&D with iC<sub>4</sub>H<sub>10</sub> and CH<sub>4</sub> demostrated good light yield achievable

- Future studies on Fluorine-based molecule with H (CHF<sub>3</sub>, CH<sub>2</sub>F<sub>2</sub>)
- R&D work on eco-friendly gas mixture as substitute to CF<sub>4</sub> (doi: 10.1109/NSS/MIC42101.2019.9059721)


#### *Improve tracking by means of Negative Ion Drift operation*



- First ever demonstration of NID operation at atmospheric pressure with optical readout of both sCMOS and PMT
- 5 MeV alpha particles and possibly Ba133 observed
- Opens a completely new window of possibility of optimisation of the gas mixtures

Systematics studies ongoing

#### Minimise internal radioactivity and optimise optical system & amplification



(a) Cross-section of the MMThGEM detector with the field names (left), plane names (right) and the gap widths (centre-left)

- Develop custom sCMOS sensor with photon sensitivity & radioactivity budget optimised for CYGNO
- Realisation of custom lens with large aperture & low radioacitivity
- Optimisation of amplification structures in terms of gain and radioacitivty budget



# **SWOT** analysis



CYGNO-30

All parameter

space accessible

to CYGNO-30 in

already excluded

Demonstration of better directional DM search performances with alternative

Demonstration of

both SI and SD

couplings

by other

experiments

(i.e. charge readout based) technology

DM nature different from the one testable with nuclear recoil in the energy range accessible by the experiment

Threat

•

٠

٠

CYGNO-04

•

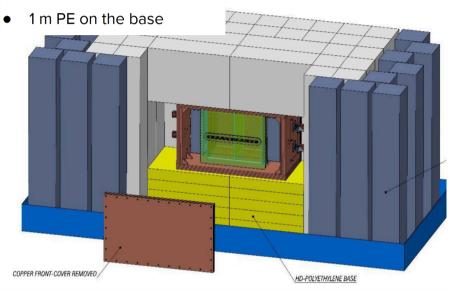
Demonstration of

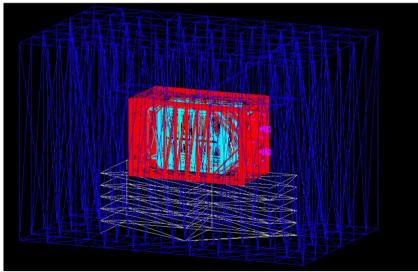
better directional

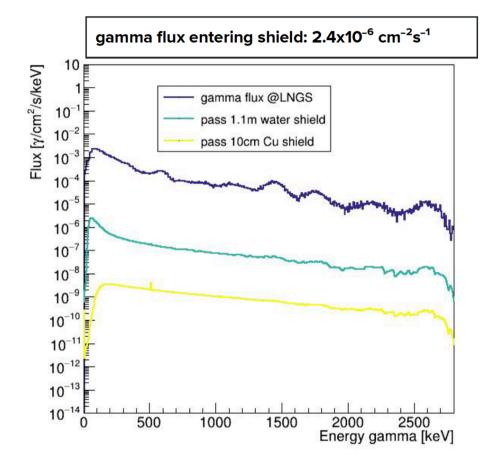
DM search

(i.e. charge

performances


with alternative


readout based) technology

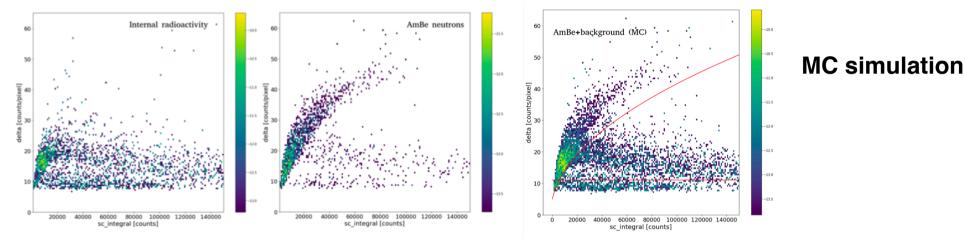

| Strength                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                         | Weakness                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                      | Opportunity                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CYGNO-04                                                                                                                                                                                                                                                                                                                                                                                        | CYGNO-30                                                                                                                                                                                                                                                                                                                                                | CYGNO-04                                                                                                                                                                                                                                                                                | CYGNO-30                                                                                                                                                                                                                                                                                                                                                                                                                             | CYGNO-04                                                                                                                                                                                                                                                                                                                                                                                                                   | CYGNO-30                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <ul> <li>Technology<br/>develop by INFN</li> <li>Large<br/>international<br/>interest</li> <li>Threshold and<br/>granularity never<br/>obtained with<br/>other technology</li> <li>Core costs<br/>covered by<br/>European<br/>fundings already<br/>secured</li> <li>Limited costs for<br/>INFN</li> <li>Demonstrate the<br/>feasibility of large<br/>TPC without huge<br/>investment</li> </ul> | <ul> <li>Explore yet<br/>uncharted DM<br/>mass versus<br/>coupling<br/>parameter space</li> <li>Different<br/>approach to<br/>DM/SN<br/>discover/measur<br/>ements</li> <li>Boost of high<br/>granularity TPC<br/>technology</li> <li>Imaging and<br/>tracking of ER<br/>and NR down to<br/>keV energies</li> <li>No need for<br/>cryogenics</li> </ul> | <ul> <li>DM sensitivity<br/>significantly<br/>below current<br/>limits</li> <li>High risk<br/>technology</li> <li>Complex Design<br/>due to space<br/>constraint</li> <li>Need for<br/>significant<br/>internal<br/>background<br/>reduction w.r.t.<br/>current<br/>know-how</li> </ul> | <ul> <li>DM sensitivity<br/>and directionality<br/>limited to 1<br/>GeV/c2 in DM<br/>masses</li> <li>Low ratio<br/>mass/volume<br/>due to gaseous<br/>target</li> <li>No self-shielding<br/>due to gaseous<br/>target</li> <li>Need for gas<br/>purification plant</li> <li>High costs with<br/>today knowhow</li> <li>Need for<br/>significant<br/>internal<br/>background<br/>reduction w.r.t.<br/>current<br/>know-how</li> </ul> | <ul> <li>International<br/>leadership</li> <li>Realize the most<br/>sensitive<br/>directional DM<br/>detectors</li> <li>Investigate new<br/>technological<br/>scenarios</li> <li>Directional and<br/>spectral precise<br/>measurement of<br/>LNGS<br/>underground<br/>neutron flux with<br/>a innovative<br/>technology</li> <li>Contribute to the<br/>investigation of<br/>DAMA puzzle<br/>with directionality</li> </ul> | <ul> <li>International<br/>leadership</li> <li>Realize the most<br/>sensitive<br/>directional DM<br/>detectors</li> <li>Discover DM</li> <li>Make DM<br/>astronomy by<br/>means of<br/>directionality</li> <li>Demonstrate<br/>directional solar<br/>neutrino<br/>detection with<br/>TPC technology</li> <li>Measure solar<br/>neutrino pp chain<br/>to lower energy<br/>threshold w.r.t.<br/>Borexino</li> </ul> |  |

## cygno (nearly) final CYGNO-04 design implemented in GEANT4, cygno Experiment prelminary evaluation of external gammas

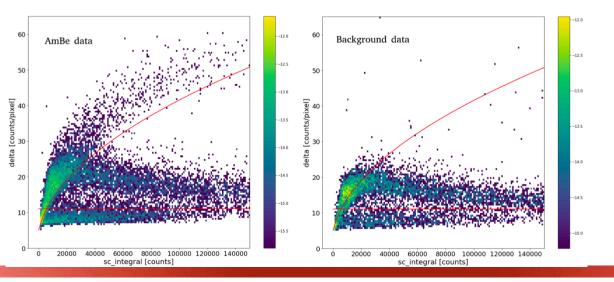
- 10 cm copper on all sides
- 1 m water on sides and top








**External gammas contribution subdominant (order** 10<sup>-9</sup> ev/s/keV) with current shielding foreseen scheme


Full simulation of all internal backgrounds (including shielding contribution) with final design on-going



## Same energy calibration, time normalisation and quality and selection cuts as background analysis, except for delta < 40 to not remove NR

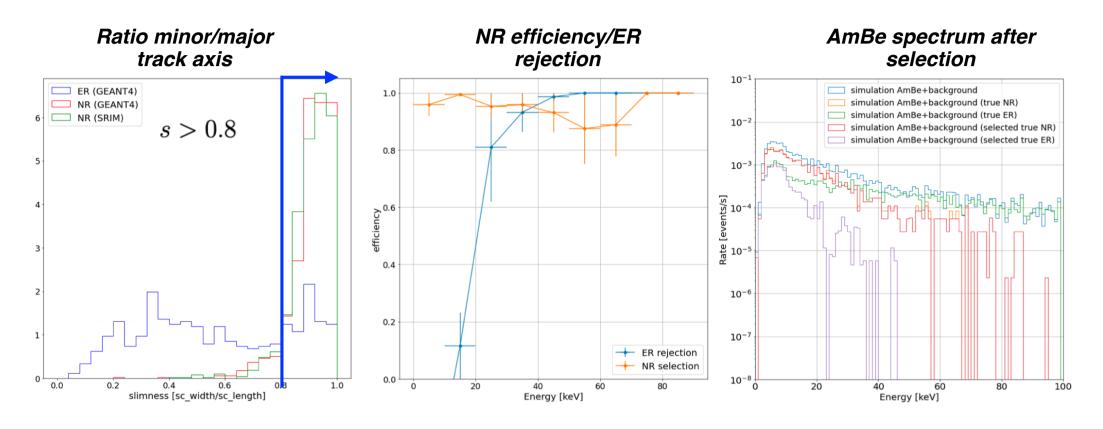


#### uncalibrated dE/dx versus uncalibrated E



#### LIME AmBe/ background data

 $\delta > \sqrt{a+bI}$ 


a = 25 and b = 0.017

#### NR selection cut optimised on MC simulation

The CYGNO Experiment - LVII Meeting of the LNGS Scientific Committee - Elisabetta Baracchini on behalf of CYGNO collaboration



## AmBe data: NR identification/ER rejection with classical approach



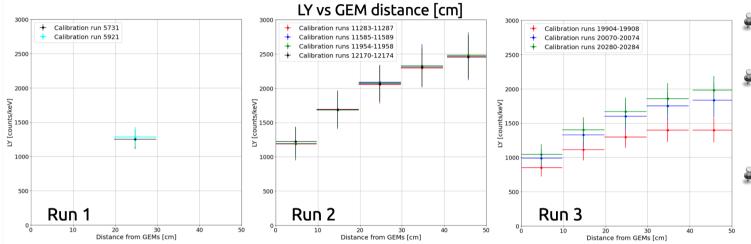
- Simple selection optimized on MC, cut on track energy density and slimness yields good ER rejection (>80% at 20 keV)
  - Preliminary demonstration of feasibility of neutron flux measurement (Run 5)
    - ML algorithm developments ongoing for ER/NR discrimination





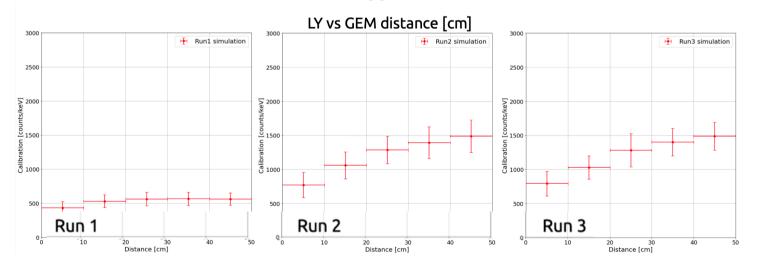
### Rejection factor on MC full simulation




3 deep lerning models developed and compare with classical analysis on track shape variable

*indication of background rejection > 10<sup>4</sup>@ 20 keV* 

# Energy calibration with <sup>55</sup>Fe




### Run1, Run2 and Run3 data energy calibration



- LY depends on distance from GEM (Z)
- Event Z position evaluation still preliminary and not precise enough yet (about 10 cm resolution) to correct data
- Random uniform Z extraction, random Gaussian LY extraction, bootstrap sampling

### Run1, Run2 and Run3 MC energy calibration



- LY from MC sample with energy between 2 and 10 keV
- Same method used for data, except for LY variation over time
- Lower LY observed in MC (optimised on overground data), strongly dependent on specific data conditions