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MonteCarlo simulation

The existing toy Monte Carlo model did not include a 
layered calorimeter. Therefore, it was necessary to modify 
both the simulation and the event reconstruction 
program.
I simulated a cubic calorimeter composed of 25 layers, 
each measuring 3x3x3 cm, using LYSO, resulting in a total 
side length of 75 cm.
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MonteCarlo simulation - results

At present, we have simulated only electrons and protons, each with varying energies: 10 
GeV, 20 GeV, 30 GeV, and 50 GeV. (Additional energies and particle types will be included 
later).

e- proton
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AI techniques
Choice of parameters

For the machine learning model, I identified the following parameters:

• R1: Ratio of energy deposited in the last layer to the total energy 
deposited in the calorimeter.

• R2: Ratio of the maximum energy deposited to the total energy deposited 
in the calorimeter.

• R3: Ratio of energy released in each layer to the total energy deposited in 
the calorimeter (25 parameters in total).

• R4: Moliere radius

• R5: Z-coordinate of the last hit layer.

• R6: Z-coordinate of the maximum energy deposited.
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Parameters distributions
Electrons vs protons of 20 GeV
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Parameters distributions
Electrons vs protons of 20 GeV
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Parameters distributions
Electrons vs protons of 20 GeV
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Parameters distributions
Electrons vs protons of 20 GeV

e- p
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Parameters distributions
Electrons vs protons of 20 GeV

e- p

R5 = last hit layer

layer ∼15-16 layer ∼25th
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Parameters distributions
Electrons vs protons of 20 GeV

pe-

R6 = maximum energy deposited

layer ∼ 5th layer ∼ 4th
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• The main goal of XGBoost is to find the best balance between the
complexity of the trees (how deep and complex they are) and the
accuracy of the prediction

• XGBoost is based on decision trees, similar to random forest. The
difference lies in the fact that XGB trains these trees one at a
time. It starts with one tree and then adds more incrementally.
Each new tree tries to correct the errors made by the previous
ones.

• Weak trees have associated weights - these weights represent
how skilled each tree is at solving the problem. XGBoost assigns
a higher weight to trees that contribute more to the overall error
reduction."

XGBoost (Extreme Gradient Boosting)

XGBoost algorithm
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Training an algorithm of machine leanring with XGBoost, on 
a sample of 20k events, the results are:

XGBoost algorithm

Results

Accuracy XGB Classifier: 99.85%

Recall XGB Classifier: 99.90%

Precision XGB Classifier: 99.80%
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EXplanable Artificial Intelligence (XAI)
SHAP Analyses

SHAP stands for SHapley Additive exPlanations, is the most 
powerful method for explaining how machine learning 
models make predictions.

In particular Beeswarm plots are a more complex and 
information-rich display of SHAP values that reveal not just 
the relative importance of features, but their actual 
relationships with the predicted outcome.
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SHAP Analysis
Beeswarm plot
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Features Importance
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Thank you
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