Al techniques for spatial calorimeters

Maria Bossa, INFN Napoli

Outline

- MonteCarlo simulation
- Al techniques
- First preliminary results

MonteCarlo simulation

The existing toy Monte Carlo model did not include a layered calorimeter. Therefore, it was necessary to modify both the simulation and the event reconstruction program.

I simulated a cubic calorimeter composed of 25 layers, each measuring 3x3x3 cm, using LYSO, resulting in a total side length of 75 cm.

MonteCarlo simulation - results

At present, we have simulated only electrons and protons, each with varying energies: 10 GeV, 20 GeV, 30 GeV, and 50 GeV. (Additional energies and particle types will be included later).

proton

e-

Al techniques

Choice of parameters

For the machine learning model, I identified the following parameters:

- R1: Ratio of energy deposited in the last layer to the total energy deposited in the calorimeter.
- R2: Ratio of the maximum energy deposited to the total energy deposited in the calorimeter.
- R3: Ratio of energy released in each layer to the total energy deposited in the calorimeter (25 parameters in total).
- R4: Moliere radius
- R5: Z-coordinate of the last hit layer.
- R6: Z-coordinate of the maximum energy deposited.

$$R1 = \frac{E_{LastLayer}}{E_{dep}^{tot}}$$

$$R2 = \frac{E_{dep}^{max}}{E_{dep}^{tot}}$$

Electrons vs protons of 20 GeV

R5 = last hit layer

Electrons vs protons of 20 GeV

R6 = maximum energy deposited

XGBoost algorithm

XGBoost (Extreme Gradient Boosting)

- The main goal of XGBoost is to find the best balance between the complexity of the trees (how deep and complex they are) and the accuracy of the prediction
- XGBoost is based on decision trees, similar to random forest. The difference lies in the fact that XGB trains these trees one at a time. It starts with one tree and then adds more incrementally. Each new tree tries to correct the errors made by the previous ones.
- Weak trees have associated weights these weights represent how skilled each tree is at solving the problem. XGBoost assigns a higher weight to trees that contribute more to the overall error reduction."

XGBoost algorithm

Results

Training an algorithm of machine leanring with XGBoost, on a sample of 20k events, the results are:

Accuracy XGB Classifier: 99.85%

Recall XGB Classifier: 99.90%

Precision XGB Classifier: 99.80%

EXplanable Artificial Intelligence (XAI) SHAP Analyses

SHAP stands for SHapley Additive exPlanations, is the most powerful method for explaining how machine learning models make predictions.

In particular <u>Beeswarm plots</u> are a more complex and information-rich display of SHAP values that reveal not just the relative importance of features, but their actual relationships with the predicted outcome.

SHAP Analysis

Beeswarm plot

Features Importance

Feature Importances

Thank you