

OPERA results on neutrino oscillations, cosmic rays and neutrino velocity

G. Rosa – Rome, Oct. 11th 2011 Dept. Of Physics – Sapienza University

<u>Contents</u>

- 1. Introduction about neutrinos
- 2. The OPERA project and the CNGS
- 3. Data taking and results on neutrino oscillations
- 4. Cosmic-ray data and analysis
- 5. Neutrino velocity
 - Baseline measurements & Geodesy (→ M. Crespi, A. Mazzoni)
 - Clock synchronization & timing
 - Data analysis and "the unexpected result"
 - The Day After: digesting the feedback from the scientific community
- 6. Conclusions and outlook

Why physicists care so much about *neutrinos*?

Neutrino Physics

Past decades:

- Key particles to understand "radioactivity" and build-up the elctroweak theory
- Basic building-blocks of matter, 3 "lepton flavours" detected
- Not quite "elementary", they MIX and thus they have (tiny) mass (*Neutrino Oscillations*)

Present issues:

- → Unique probes of fundamental processes ("beyond the Standard Model")
- Messangers of the deep-inside stars (and planets) and early-stage collapsing objects (e.g. supernovae); relics of the primordial universe (Solar model, Astrophysics, Geoneutrinos, Cosmology, dark matter?)
- → Properties still unknown: all mixing parameters, mass, mass hyerarchy, Dirac/Majorana nature, CP-violation, any "sterile" partner...

Natural neutrino sources...

..."Also": Supernova Neutrinos (~10 MeV) Relic "Big-Bang" Neutrinos (250 meV)

...and artificial neutrino sources

Nuclear reactors

Anti-neutrinos are emitted by the radioactive fissile products when they disintegrate via beta decay (~few

• Anti-neutrinos are emitted by the radioactive fissile products when they disintegrate via beta decay MeV Energy)

Accelerators

Main process: π , $K \rightarrow \mu + \nu_{\mu}$ ν_{e} contamination from muon decay & K

OPERA: first direct detection of neutrino oscillations in v_{τ} appearance mode

following the Super- Kamiokande discovery of oscillations with atmospheric neutrinos and the confirmation obtained with solar neutrinos and accelerator beams.

The **PMNS** 3-flavor oscillation formalism predicts:

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) \sim \frac{\sin^2 2\theta_{23} \cos^4 \theta_{13} \sin^2 (\Delta m_{23}^2 L/4E)}{1}$$

Requirements:

1) ~"pure" v_u beam, 2) long baseline, 3) high neutrino energy, 4) high beam intensity, 5) detect short lived τ 's

The OPERA Collaboration 160 physicists, 30 institutions, 11 countries

Belgium IIHE-ULB Brussels Croatia IRB Zagreb France LAPP Annecy IDNU Issues

IPNL Lyon IPHC Strasbourg Italy LNGS Assergi Bari Bologna LNF Frascati L'Aquila Naples Padova Rome Salerno

Korea Jinju

Russia

INR RAS Moscow LPI RAS Moscow ITEP Moscow SINP MSU Moscow JINR Dubna

Germany

Hamburg

<mark>Israel</mark> Technion Haifa

	_
	1

众

Japan Aichi Toho Kobe Nagoya Utsunomiya

Switzerland Bern ETH Zurich

Turkey METU Ankara

C*

http://operaweb.lngs.infn.it/scientists/?lang=en

Rome, L'Aquila

CNGS-induced "internal" events in the *electronic detectors*

G. Rosa – Rome, Oct. 11th 2011 Dept. Of Physics – Sapienza University

Event classification: "with muon/ muonless"

12

Lepton flavour unvealed (CC only!) after emulsion plate scanning and measurements ...

Example 1: a muon-neutrino, with a short-lived "charmed" particle produced

Lepton flavour unvealed (CC only!) after emulsion plate scanning and measurements ...

Example 2: an electron-neutrino identified by its "e.m. showering"

Lepton flavour unvealed (CC only!) after emulsion plate scanning and measurements ...

Example 3: "the" tau-neutrino event catched by its decay topology and... the many checks done

All details in **Phys. Lett. B 691 (2010) 138-145** *"Observation of a first nu-tau candidate in the OPERA experiment in the CNGS beam "*

Status of CNGS data taking: "protons on target" (p.o.t.)

	beam days	# p.o.t.*	SPS eff.	events in the bricks	run
2007		0.082 × 10 ¹⁹		38	commissioning
2008	123	1.78x10 ¹⁹	61%	1698	Physics runs
2009	155	3.52x10 ¹⁹	70%	3693	Physics runs
2010	187	4.04x10 ¹⁹	81%	4248	Physics runs

G. Rosa – Rome, Oct. 11th 2011 Dept. Of Physics – Sapienza University Current expected intensity : 4.28E19Achieved intensity : 4.55E19 End of 2011 run expected intensity : 5.0E19

Status of the oscillation analysis

Analysis of 2008-2009 runs ~ completed arXiv-1107.2594v1 – submitted

	0mu	1mu	All
Events predicted by the electronic detector	1503	3752	5255
Interactions located in ECC	519	2280	2799
Located in dead material	54	245	299
Decay search performed	494	2244	2738

Charm events as a control sample (data versus MC)

Topology	Observed events	Expected events			
		Charm	Background	Total	
Charged 1-prong	13	15.9	1.9	17.8	
Neutral 2-prong	18	15.7	0.8	16.5	
Charged 3-prong	5	5.5	0.3	5.8	
Neutral 4-prong	3	2.0	<0.1	2.1	
Total	39	39.1±7.5	3.0±0.9	42.2±8.3	

Status of the oscillation analysis

Decay channel	Number of signal events expected for			
	22.5×10 ¹⁹ p.o.t.	Analysed sample		
$ au ightarrow \mu$	1.79	0.39		
au ightarrow e	2.89	0.63		
au ightarrow h	2.25	0.49		
$\tau \rightarrow 3h$	0.71	0.15		
Total	7.63	1.65		

One ν_{τ} candidate observed in the $\tau \rightarrow$ h channel \leftrightarrow Expected signal events

	Decay	Number of background events for:							
	channel		$22.5 \times$	10 ¹⁹ p.c).t.		Analys	ed samp	ple
[_	Charm	Hadron	Muon	Total	Charm	Hadron	Muon	Total
Background	$\tau \rightarrow \mu$	0.025	0.00	0.07	0.09±0.04	0.00	0.00	0.02	0.02±0.01
re-evaluated	au ightarrow e	0.22	0	0	0.22 ± 0.05	0.05	0	0	0.05±0.01
	au ightarrow h	0.14	0.11	0	0.24±0.06	0.03	0.02	0	0.05 ± 0.01
	au ightarrow 3h	0.18	0	0	0.18±0.04	0.04	0	0	0.04±0.01
	Total	0.55	0.11	0.07	0.73±0.15	0.12	0.02	0.02	0.16±0.03

Sept. 2011 update (+1000 ev, 2010 run): 52 charm candidates, 20 ν_e candidates, 1 ν_{τ} candidate Speed-up of tau search with "wise cuts" & electron-neutrino study in progress

Cosmic-ray Data in OPERA (muons reaching the underground detector)

R_{μ} measurements with $E_{\mu}\cos\theta^* > 1$ TeV

Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

We profited from the collaboration of individuals and groups that worked with us for the various metrology measurements reported here:

CERN: CNGS, Survey, Timing and PS groups

The geodesy group of the Università Sapienza of Rome

The Swiss Institute of Metrology (METAS)

The German Institute of Metrology (PTB)

T. Adam et al. [OPERA Collaboration] "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam ArXiv:1109.4897 [hep-ex]

Past experimental results

FNAL experiment (Phys. Rev. Lett. 43 (1979) 1361)

high energy ($E_v > 30$ GeV) short baseline experiment. Tested deviations down to $|v-c|/c| \le 4 \times 10^{-5}$ (comparison of muon-neutrino and muon velocities).

SN1987A (see e.g. Phys. Lett. B 201 (1988) 353)

electron (anti) neutrinos, 10 MeV range, 168'000 light years baseline. $|v-c|/c \le 2 \times 10^{-9}$. Performed with observation of neutrino and light arrival time.

MINOS (Phys. Rev. D 76 072005 2007)

muon neutrinos, 730 km baseline, E_v peaking at ~3 GeV with a tail extending above 100 GeV. (v-c)/c = $5.1 \pm 2.9 \times 10^{-5}$ (1.8 σ).

Principle of the neutrino velocity measurement **Definition of neutrino velocity:** ratio of precisely measured baseline and time of flight Time of flight measurement: tagging of neutrino production time tagging of neutrino interaction time by a far detector accurate determination of the baseline (geodesy) expected small effects: long baseline required adequate level of systematic errors reached

CNGS events selection

Offline coincidence of SPS proton extractions (kicker time-tag) and OPERA events

 $|T_{OPERA} - (T_{Kicker} + TOFc)| < 20 \ \mu s$

Synchronisation with standard GPS systems ~100 ns (inadequate for our purposes) Real time detection of neutrino interactions in target and in the rock surrounding OPERA

Geodesy at LNGS (> M. Crespi, A. Mazzoni)

Combination with CERN geodesy

CERN –LNGS measurements (different periods) combined in the ETRF2000 European Global system, accounting for earth dynamics (collaboration with CERN survey group)

Benchmark	X (m)	Y (m)	Z (m)
GPS1	4579518.745	1108193.650	4285874.215
GPS2	4579537.618	1108238.881	4285843.959
GPS3	4585824.371	1102829.275	4280651.125
GPS4	4585839.629	1102751.612	4280651.236

LNGS benchmarks In ETRF2000

Cross-check: simultaneous CERN-LNGS measurement of GPS benchmarks, June 2011

Resulting distance (BCT – OPERA reference frame)

(731278.0 ± 0.2) m

CNGS-OPERA synchronization

Standard GPS receivers ~100 ns accuracy: CERN Symmetricom XLi (source of General Machine Timing) LNGS: ESAT 2000

2008: installation of a twin high accuracy system calibrated by METAS (Swiss metrology institute) Septentrio GPS PolaRx2e + Symmetricom Cs-4000

PolaRx2e:

- frequency reference from Cs clock
- internal time tagging of 1PPS with respect to individual satellite observations
- offline common-view analysis in CGGTTS format
- use ionosphere free P3 code

Standard technique for high accuracy time transfer

Permanent time link (~1 ns) between reference points at CERN and OPERA

GPS common-view mode

Standard GPS operation:

resolves x, y, z, t with \geq 4 satellite observations

Common-view mode (the same satellite for the two sites, for each comparison):

x, y, z known from former dedicated measurements: determine time differences of local clocks (both sites) w.r.t. the satellite, by offline data exchange

730 km << 20000 km (satellite height) → similar paths in ionosphere

Result: TOF time-link correction (event by event)

CERN-OPERA inter-calibration cross-check

Independent twin-system calibration by the Physikalisch-Technische Bundesanstalt

High accuracy/stability portable timetransfer setup @ CERN and LNGS

GTR50 GPS receiver, thermalised, external Cs frequency source, embedded Time Interval Counter

Correction to the time-link: $t_{CERN} - t_{OPERA} = (2.3 \pm 0.9) \text{ ns}$

THE STARTER: the CNGS neutrino beam

- SPS protons: 400 GeV/c
- Cycle length: 6 s
- Two 10.5 µs extractions (by kicker magnet) separated by 50 ms
- Beam intensity: 2.4 10¹³ proton/extraction
- ~ pure muon neutrino beam (<E> = 17 GeV) travelling through the Earth's crust

Proton spill shape

Reminiscence of the Continuous Turn extraction from PS (5 turns) SPS circumference = $11 \times PS$ circumference: SPS ring filled at 10/11Shapes varying with time and both extractions

→ Precise accounting with WFD waveforms: more accurate than: e.g. average neutrino distribution in a near detector

Proton pulse digitization:

- Acqiris DP110 1GS/s waveform digitizer (WFD)
- WFD triggered by a replica of the kicker signal
- Waveforms UTC-stamped and stored in CNGS database for offline analysis

Proton timing by Beam Current Transformer

Fast BCT 400344(~ 400 MHz)

2010 calibration with Cs clock

CNGS events selection

OPERA data: narrow peaks of the order of the spill width (10.5 μ s)

Negligible cosmic-ray background: O(10⁻⁴)

Measurement of the neutrino event time distribution

Typical neutrino event time distributions in 2008 w.r.t kicker magnet trigger pulse:

1) Not flat

2) Different timing

for first and second extraction

OPERA

 \rightarrow Need to precisely measure the protons spills

Neutrino event-time distribution PDF

- Each event is associated to its proton spill waveform
- \bullet The "parent" proton is unknown within the 10.5 μs extraction time
- → normalized waveform sum: PDF of predicted time distribution of neutrino events
 → compare to OPERA detected neutrino events

different timing w.r.t. kicker magnet signal

Time calibration techniques

Continuous two-way measurement of UTC delay at CERN (variations w.r.t. nominal)

BCT calibration (1)

Dedicated beam experiment:

BCT plus two pick-ups (~1 ns) with LHC beam (12 bunches, 50 ns spacing)

 Δt_{BCT} = t4 - t3 = (580 \pm 5) ns

t3 : derived by t1 - t2 measurement and survey

BCT calibration (2)

result: signals comparison after $\Delta_{\rm BCT}$ compensation

Neutrino production point

Unknown neutrino production point:

$$\Delta t = \frac{z}{\beta c} - \frac{z}{c} = \frac{z}{c} \left(\frac{1}{\beta} - 1\right) \approx \frac{z}{c} \frac{1}{2\gamma^2}$$

1)accurate UTC time-stamp of protons 2)relativistic parent mesons (full FLUKA simulation)

TOF_c = assuming *c* from BCT to OPERA (2439280.9 ns) TOF_{true} = accounting for speed of mesons down to decay point $\Delta t = TOF_{true} - TOF_{c}$

$$\langle \Delta t \rangle = 1.4 \times 10^{-2} \, \text{ns}$$

The Target Tracker (TT)

pre-location of neutrino interactions and event timing

- Extruded plastic scintillator strips (2.6 cm width)
- Light collections with WLS fibres
- Fibres read out at either side with multi-anode 64 pixels PMTs (H7546)

Read out by 1 Front-End DAQ board per side

OPERA readout scheme

Trigger-less, asynchronous Front-End nodes (1200); Gigabit Ethernet network

Clock distribution system (10 ns UTC event time-stamp granularity)

Mezzanine DAQ card common to all sub-detectors Front End nodes: CPU (embedded LINUX), Memory, FPGA, clock receiver and ethernet

TT time response measurement

Scintillator, WLS fibers, PMT, analog FE chip (ROC) up to FPGA trigger input

UV laser excitation:

 \rightarrow delay from photo-cathode to FPGA input: 50.2 ± 2.3 ns

Average event time response: 59.6 ± 3.8 ns (sys)

(including position and p.h. dependence, ROC time-walk, DAQ quantization effects accounted by simulations)

Delay calibrations summary					
ltem	Result	Method			
CERN UTC distribution (GMT)	10085 ± 2 ns	Portable CsTwo-ways			
WFD trigger	30 ± 1 ns	Scope			
BTC delay	580 ± 5 ns	Portable CsDedicated beam experiment			
LNGS UTC distribution (fibers)	40996 ± 1 ns	Two-waysPortable Cs			
OPERA master clock distribution	4262.9 ± 1 ns	Two-ways Portable Cs			
FPGA latency, quantization curve	24.5 ± 1 ns	Scope vs DAQ delay scan (0.5 ns steps)			
Target Tracker delay (Photocathode to FPGA)	$50.2 \pm 2.3 \text{ns}$	UV picosecond laser			
Target Tracker response (Scintillator-Photocathode, trigger time-walk, quantisation)	9.4 ± 3 ns	UV laser, time walk and photon arrival time parametrizations, full detector simulation			
CERN-LNGS intercalibration	2.3 ± 1.7 ns	METAS PolaRx calibration PTB direct measurement			

Summary of the principle for the TOF measurement

Measure $\delta t = TOF_c - TOF_v$

Event selection (earliest TT hit of the event as "stop")

Statistics: 2009-2010-2011 CNGS runs (~10²⁰ pot)

Internal events:

Same selection procedure as for oscillation searches: 7586 events

External events:

Rock interaction \rightarrow require muon 3D track: 8525 events

(Timing checked with full simulation, 2 ns systematic uncertainty by adding external events)

Data/MC agree for 1st hit timing (within systematics)

"INTERNAL" and "EXTERNAL" OPERA EVENTS

Event time corrections

Time-link correction (blue points)

Correction due to the earliest hit position

average correction: 140 cm (4.7 ns)

Analysis method

For each neutrino event in OPERA \rightarrow proton extraction waveform

Sum up and normalise: \rightarrow PDF w(t) \rightarrow separate likelihood for each extraction

$$L_k(\delta t_k) = \prod_i w_k(t_j + \delta t_k)$$
 k=1,2 extractions

Maximised versus δt:

 $\delta t = TOF_c - TOF_v$

Positive (negative) $\delta t \rightarrow$ neutrinos arrive earlier (later) than light

statistical error evaluated from log likelihood curves

"Blind " analysis

Analysis deliberately conducted by referring to the obsolete timing of 2006:

- 1) Wrong baseline, referred to an upstream BCT in the SPS, ignoring accurate geodesy
- 2) Ignoring TT and DAQ time response in OPERA
- 3) Using old GPS inter-calibration prior to the time-link
- 4) Ignoring the BCT and WFD delays
- 5) Ignoring UTC calibrations at CERN

- → Resulting δt by construction much larger than individual calibration contributions ~ 1000 ns
- → "Box" opened once all correction contributions reached satisfactory accuracy

Data vs PDF: before and after likelihood result

(BLIND) $\delta t = TOF_c - TOF_v =$ (1048.5 ± 6.9) ns (stat)

 χ^2 / ndof :

first extraction: 1.06 second extraction: 1.12

Zoom on the extractions leading and trailing edges

3) Internal vs external events:

All events: δt (blind) = TOF_c -TOF_v = (1048.5 ± 6.9 (stat.)) ns

Internal events only: (1047.4 \pm 11.2 (stat.)) ns

Opening the box

timing and baseline corrections

systematic uncertainties

	Blind 2006	Final analysis	Correction (ns)
Baseline (ns) Correction baseline	2440079.6	2439280.9	-798.7
CNGS DELAYS : UTC calibration (ns)	10092.2	10085	-7 2
WFD (ns) Correction WFD	0	30	30
BCT (ns) Correction BCT	0	-580	-580
OPERA DELAYS :	0	50.6	
FPGA (ns)	0	-24.5	
Correction TT+FPGA+DAQ	-4245.2	-4202.9	17.4
GPS syncronization (ns) Time-link (ns)	-353 0	0 -2.3	
Correction GPS Total			350.7 -987. 8

Systematic uncertainties	ns
Baseline (20 cm)	0.67
Decay point	0.2
Interaction point	2
UTC delay	2
LNGS fibres	1
DAQ clock transmission	1
FPGA calibration	1
FWD trigger delay	1
CNGS-OPERA GPS synchronization	1.7
MC simulation (TT timing)	3
TT time response	2.3
BCT calibration	5
Total uncertainty (in quadrature)	7.4

For CNGS v_u beam, <E> = 17 GeV:

 $\delta t = TOF_c - TOF_v =$

 $(1048.5 \pm 6.9 \text{ (stat.)}) \text{ ns} - 987.8 \text{ ns} = (60.7 \pm 6.9 \text{ (stat.)} \pm 7.4 \text{ (sys.)}) \text{ ns}$

relative difference of neutrino velocity w.r.t. c:

 $(v-c)/c = \delta t / (TOF_c - \delta t) = (2.48 \pm 0.28 \text{ (stat.)} \pm 0.30 \text{ (sys.)}) \times 10^{-5}$

(730085 m used as neutrino baseline from parent mesons average decay point)

 6.0σ significance

Study of the energy dependence

 Only internal muon-neutrino CC events used for energy measurement (5489 events)

$$(\mathsf{E} = \mathsf{E}_{\mu} + \mathsf{E}_{had})$$

 Full MC simulation: no energy bias in detector time response (<1 ns)
 → systematic errors cancel out δt = TOF_c-TOF_v= (60.3 ± 13.1 (stat.) ± 7.4 (sys.)) ns for <E_v> = 28.1 GeV (result limited to events with measured energy)

No clues for energy dependence within the present sensitivity in the energy domain explored by the measurement

Conclusions (1)

• The OPERA detector at LNGS in the CERN CNGS muon neutrino beam has allowed the most sensitive terrestrial measurement of the neutrino velocity over a baseline of about 730 km.

• The measurement profited of the large statistics accumulated by OPERA (~16000 events), of a dedicated upgrade of the CNGS and OPERA timing systems, of an accurate geodesy campaign and of a series of calibration measurements conducted with different and complementary techniques.

• The analysis of data from the 2009, 2010 and 2011 CNGS runs was carried out to measure the neutrino time of flight. For CNGS muon neutrinos travelling through the Earth's crust with an average energy of 17 GeV the results of the analysis indicate an early neutrino arrival time with respect to the one computed by assuming the speed of light:

$\delta t = TOF_c - TOF_v = (60.7 \pm 6.9 \text{ (stat.)} \pm 7.4 \text{ (sys.)}) \text{ ns}$

• We cannot explain the observed effect in terms of known systematic uncertainties. Therefore, the measurement indicates a neutrino velocity higher than the speed of light:

 $(v-c)/c = \delta t / (TOF_c - \delta t) = (2.48 \pm 0.28 \text{ (stat.)} \pm 0.30 \text{ (sys.)}) \times 10^{-5}$

with an overall significance of 6.0 σ .

Conclusions (2)

• A possible δt energy dependence was also investigated. In the energy domain covered by the CNGS beam and within the statistical accuracy of the measurement we do not observe any significant effect.

• Despite the large significance of the measurement reported here and the stability of the analysis, the potentially great impact of the result motivates the continuation of our studies in order to identify any still unknown systematic effect.

• We do not attempt any theoretical or phenomenological interpretation of the results.

(My) conclusions (3) [The Day After...]

Results scrutinized worldwide by the scientific community

Apart from "skepticism" and "irony", many valuable hints to improve/clarify the issue

Questions about geodesy, time synchronization, calibration methods ~answered

Main concern (and criucial point): rely on BCT timing and the corresponding reference PDF. Further analysis in progress

The "anomaly" till now survived, but unknown systematics could still be there

Interesting experimental follow-up envisaged by MINOS, T2K, and CNGS itself (e.g. Pulsed beam operation, muon pit monitoring, OPERA checks with RPC etc.)

I do not feel allowed to "hope it is true" or "do not believe by prejudice": mostly I'm CURIOUS to see the outcome, and I'll stick to the experimental protocol [do (accurate) measurements, estimate systematics and statistical errors, and make results PUBLIC]

More news to follow

Thank you for coming!

