

# Neutron star gravitational waves emission

Francesca Attadio, 17th April, 2024



Fundamental physics and searches

## **Presentation outline**

- Gravitational waves (GWs) and standard categorization of GWs signals with a focus on modeled signals
- Neutron stars (NSs), pulsars and magnetars,
- GWs emitted by NSs, amplitude and relevant parameters
- Different kind of searches and time frequency maps
- Machine learning approach
- Conclusions





## **Gravitational waves**

Gravitational-Waves (GW) are **ripples in** the space-time fabric produced by huge astrophysical catastrophes, such as the coalescence of compact binary (two black holes and/or neutron stars).



Image credit: LIGO/T. Pyle



### The first direct detection is dated 14th September 2015, a century after their prediction by Einstein (1916), within the General Relativity framework.







# Standard categorization of GWs signals



Image credit: Shanika Galaudage





# **Modeled signals**

### **Transient signals**



### **Duration**: 0.1 to 100 seconds

Image credit: NASA's Goddard Space Flight Center/Scott Noble

### **Sources**: Compact binary coalescence (CBC)



### **Continuous waves**



**Duration**: hours to years

Image credit: NASA, Dana Berry

**Sources**: Isolated neutron stars, low mass x ray binary

Not detected 





 $\mathbf{\Omega}$ 

Final stage of stars with an initial mass between 8 and 30 solar masses.

### Main characteristics:





Density: 
$$\rho \leq 10^{15} \frac{g}{\text{cm}^3}$$

(From the crust to the core)

### It is impossible to reach on earth this kind of densities

NSs are cosmic laboratory 

## **Neutron stars (NSs)**



Credit: NASA's Goddard Space Flight Center/Conceptual Image Lab



## **Gravitational waves**







# Spin down equation

### The rotational energy of the star is used to emit GWs and electromagnetic radiation

- n: Braking index
- k: Constant

### Star rotational parameters





- The measure of the asymmetry is the ellipticity ( $\epsilon$ )
  - $\epsilon \sim 10^{-5} 10^{-3} \to 0.1 10$  m
  - Possible cause of **asymmetry**:
  - ----> Mountains
  - R-modes



Magnetic field

We do not have a measure of ellipticity for known NSs

## **Ellipticity (Oblateness)**



### Pulsar



### Image credit: Kevin Gill

 $B \sim 10^9 - 10^{14} \,\mathrm{G}$  $f_{rot} \sim 0.1 - 740 \text{ Hz}$  $\epsilon < 10^{-5}$ 

## **Different kind of NSs**

### Newly born Magnetars



 $B \sim 10^{15} - 10^{16} \,\mathrm{G}$  $f_{rot} \sim 250 - 1000 \text{ Hz}$  $\epsilon \sim 10^{-5} - 10^{-3}$ 



## **Different kind of searches**





Image credit: Cristiano Palomba



## **Time-frequency maps**

**Time series** 



### Time-frequency map

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

## Machine learning

![](_page_12_Picture_1.jpeg)

- Training set
- \* Validation set
- \* Test set

Loss function

![](_page_12_Picture_6.jpeg)

It estimates the distance from the current output and the desired output

![](_page_12_Picture_8.jpeg)

Our goal during the training is to minimize this function

![](_page_12_Picture_10.jpeg)

The choice of the loss function depends on the choice of the ML model

![](_page_12_Figure_12.jpeg)

![](_page_12_Picture_15.jpeg)

## **Machine learning**

![](_page_13_Picture_1.jpeg)

- \* Training set
- Validation set \*
- Test set \*

Loss function

![](_page_13_Picture_6.jpeg)

It estimates the distance from the current output and the desired output

![](_page_13_Picture_8.jpeg)

Our goal during the training is to minimize this function

![](_page_13_Picture_10.jpeg)

The choice of the loss function depends on the choice of the ML model

![](_page_13_Figure_12.jpeg)

![](_page_13_Picture_14.jpeg)

## Classifier

### Classification of time-frequency maps

### Presence of signal

![](_page_14_Figure_3.jpeg)

### Absence of signal

![](_page_14_Picture_7.jpeg)

![](_page_14_Picture_8.jpeg)

## Classifier

### Classification of time-frequency maps

### Presence of signal

![](_page_15_Figure_3.jpeg)

### Absence of signal

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

![](_page_16_Figure_1.jpeg)

17

## Denoiser

![](_page_16_Picture_5.jpeg)

# **Preliminary conclusions**

![](_page_17_Figure_1.jpeg)

increase the probability to see an event

![](_page_17_Picture_6.jpeg)

## Conclusions

### It is important to detect GWs emitted by NSs in order to understand how matter behaves in such extreme conditions

- It is an open research field
  - We are studying frontier physics

- Improve the already existing data analysis techniques
  - Develop new techniques
  - New generation interferometers

What is next?

![](_page_18_Picture_11.jpeg)

## Conclusions

### It is important to detect GWs emitted by NSs in order to understand how matter behaves in such extreme conditions

- It is an open research field
- We are studying frontier physics

- Improve the already existing data analysis techniques
  - Develop new techniques
  - New generation interferometers

**THANK YOU** FOR YOUR ATTENTION

What is next?

![](_page_19_Picture_12.jpeg)

![](_page_19_Picture_13.jpeg)

![](_page_19_Picture_14.jpeg)

## **Backup slides**

![](_page_21_Picture_0.jpeg)

![](_page_21_Figure_1.jpeg)

### **Gaussian frequency dependent** noise

![](_page_21_Figure_3.jpeg)

Noise curves used for Simulations in the update of the Observing Scenarios Paper LIGO Document T2000012-v2

# Noise

### **Simulated data:**

Simulated noise according to the noise

curve

![](_page_21_Figure_9.jpeg)

Francesca Attadio, 17th April 2024, PhD seminar

22

![](_page_21_Picture_12.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

Fixed inclination angle:  $\iota \sim 56^{\circ}$ 

# Signal

Fixed initial amplitude :  $2 \times 10^{-23}$ 

![](_page_22_Picture_12.jpeg)

![](_page_22_Picture_15.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Figure_1.jpeg)

## Artefacts

![](_page_23_Figure_3.jpeg)

![](_page_23_Picture_6.jpeg)

![](_page_24_Picture_0.jpeg)

### Number of signals: 1200 training, 1200 testing

- **Training set:** 2226
- **\* Validation set:** 556
- **Test set**: 2177 \*
- \* Threshold  $10^{-23}$  : 5 × 10<sup>-25</sup>
- \* **Normalization**: maximum of noise and signal maps group

## Dataset

![](_page_24_Figure_8.jpeg)

![](_page_24_Picture_14.jpeg)

### Maps construction

![](_page_25_Figure_1.jpeg)

### Number of maps crossed by a signal

![](_page_25_Figure_3.jpeg)

![](_page_25_Figure_6.jpeg)

![](_page_25_Picture_7.jpeg)

![](_page_26_Figure_1.jpeg)

## Denoiser

![](_page_26_Figure_3.jpeg)

### **Preserving the signal**

![](_page_26_Picture_7.jpeg)

# Overlap

![](_page_27_Figure_1.jpeg)

$$\epsilon = 1.3 \times 10^{-3}$$
  
 $f_0 = 1370 \text{ Hz}$ 

$$\mathcal{O} = 0.96$$

![](_page_27_Figure_4.jpeg)

$$\epsilon = 3 \times 10^{-3}$$
  
 $f_0 = 1737 \text{ Hz}$ 

 $\mathcal{O} = 0.11$ 

![](_page_27_Picture_9.jpeg)

![](_page_28_Figure_1.jpeg)

### F1 score

## Loss function, denoiser

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_4.jpeg)

## **Overlap vs #maps**

![](_page_30_Figure_1.jpeg)

First map Second map Third map Fourth map Fifth map Sixth map

![](_page_30_Figure_3.jpeg)

![](_page_30_Picture_6.jpeg)

# Efficiency and wrong tags

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

# trigger

![](_page_31_Picture_5.jpeg)

![](_page_31_Picture_9.jpeg)

![](_page_31_Picture_10.jpeg)

### **Comparison with other methods for long-transient signals**

Collaboration paper: Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817, Abbott et al. 2019

Generalized FrequencyHough

 $\epsilon = 1.44 \times 10^{-3}$   $f_0 = 1740$  kHz  $\Delta t = 2$  s

This method

Computational cost: 1 GPU for  $\sim$ 3 hours, smaller than GFh

Detector sensitivity improved by a factor of 3 in the [1700,1800] frequency band

We gained a factor of  $\sim 2$  in distance

$$I = 4.34 \times 10^{38} \text{kg m}^2 \implies d_{FrH} = 0.242 \text{ M}^2$$

 $\epsilon = 1.77 \times 10^{-3}$   $f_0 = 1753$  kHz  $\Delta t = 2$  s  $I = 1.4 \times 10^{38}$ kg m<sup>2</sup>  $\rightarrow d = 0.402$  Mpc

![](_page_32_Picture_13.jpeg)

![](_page_32_Picture_14.jpeg)

![](_page_32_Picture_15.jpeg)