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Summary:
Motivations;

Machine learning and Graph Theory;

Analysis of fully hadronic -nal state (Y → XH → qqbb) with ATLAS data;

Results.

Goal:
To evaluate the effectiveness of the graph representation of jets to train a neural
network for signal/background classi-cation.
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ANOMALY DETECTION (AD) 
OVERVIEW
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Standard Model describes all fundamental particles. However, there are still some questions 
that remain unanswered (dark matter, neutrino masses, etc.). 

Some extensions, called Beyond Standard Model (BSM) theories, have been introduced to 
solve these limits.

AD techniques can be designed to do experiments with minimal assumptions (model-
independency) for BSM searches.

AD aims to identify unexpected deviations or unusual patterns in data, potentially indicating 
new information or anomalous behavior.

SearchesMeasurements



! → #$  IN HADRONIC FINAL STATES

o First Anomaly Detection application in unsupervised approach in ATLAS

o Heavy Vector Triplet model-based

o Analysis performed on full Run-2 dataset ( L = 139	fb&' ) with data
collected at s = 13 TeV	collisions with the ATLAS detector.

o Boosted and Resolved regime depending on mass ratio:(!
("
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MOTIVATIONS

A set of features with basic information (low-level) such as information 
coming directly from the detectors implies better performances wrt 
features built combining basic information (high-level).

Goal: to study graph representation of low-level features 
(variables) such as jets constituents.
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Traditional architectures, assume a geometrically stable 
data organization.
Energy deposits of the constituents in calorimeters 
often exhibit sparse data characteristics.
Geometrical deep learning architectures, like GNNs, 
have demonstrated enhanced learning capabilities and 
performance on such data type.

Searching for Exotic Particles in High-
Energy Physics with Deep Learning

Why graphs?

Hadronizat
ion

https://arxiv.org/abs/1402.4735
https://arxiv.org/abs/1402.4735


GRAPH THEORY

Graphs G = (V, E) consist of vertices (nodes v ∈ V) that represent entities 
and edges (connections e ∈ E) that represent relationships between the 
vertices. 

• Clustering Coefficient 6(: measure of the tendency of nodes to cluster together;

• Degree 7) number of edges;

• Diameter diam(G): the length of the shortest path between the most distanced 
nodes;

• Connected components N*+,-.: subgraphs that we can isolate in a graph

• Number of nodes N/+01. : the actual number of vertices of a graph or a 
component

Graphs created using up to 40 jet constituents as nodes:

• p2345*, η, ϕ 6	used as node features for constituent i → p2345* = -'(

-'

• Edges defined with a criteria on distance ΔR between two nodes 
ΔR(const6, const7)

9

G

E

B
L H

K

D

I

FJ

C

N

A

O

M

TR

Q

P

U

S
R

Z

Y

X
W

V

5) = 3
7) =

1
3

9*+,-. = 10

9/+01. = 3
diam G = 7

B
N

A
M

T ΔR-./ = 0.1
ΔR T, N = 0.25 > ΔR-./ → NO edge
ΔR A, N = 0.07 < ΔR-./ → edge

Hadronizat
ion



DNN AND 
GRAPH 

FEATURES
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Different feature combinations using kinematical and geometrical features.
0 and 1 refers to the first and the second component of the graph, 
ordered by number of nodes.
• Kin: kinematical variables
• Geo01: graph variables for connected components
• GeoAll01: graph variables for the entire graph and connected 

components
• KinGeoAll01: all of the above

Supervised approach: event labels aware
Area Under the ROC Curve and Accuracy score used 
as metrics in classification task with DNN.
 

PositivesNegatives

Cut

TP true positives
FP false positives
TN true negatives
FN false negatives

acc



BENCHMARK RESULTS

Preliminary test on graph 
representation features 
using a dataset with QCD 
background and full 
hadronic final state as signal

4 NN architectures that differ 
from each other by 
complexity.
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Results: 
1. A graph representation of jets can be useful to perform 

signal/background discrimination for the kinds of BSM 
processes treated. 

2. The best architecture has been chosen with the best 
compromise in performance (ROC AUC) and time per 
epoch
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Welcome to the home of the LHC Olympics 2020!
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Hyperparameters

Parameter Value

Optimizer ADAM

Loss function Binary Cross Entropy

Learning rate 10CD
Batch size 32

Epochs 300
Validation Fraction 15%

https://github.com/LHCO2020/homepage


! → #$ → %&%	(&(
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Type Process Events

Data ATLAS data QCD dijet 50 k

Signal MC simulation
(36.1	-."#) / → 12 → 3443.. 17 k

!0	[$%&]

Preselection over the events

$2$ , $2% > 50	ABC
Leading large-R jet D3 > 500	ABC

$22 > 1300	ABC

Accuracy score

Training sample
E% = 3	H;I
E& = 300	K;I
E&
E%

= 	0.1

Merged regime

Graphs created with a jet transformation. Deep 
learning techniques are capable to learn features 
with a large correlation in jet masses and 
QCD background have a wide spread distribution 
over the mass → bias over the mass

acc
GeoAll01



FEATURE COMBINATION RESULTS

Using only geometric features show good results in deep neural
network performance.

As expected, using kinematic features show good discriminative
power.

Adding the geometric variables to the kinematic ones slightly
improves the discriminant power.
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Geo01: graph variables for connected components
Kin: kinematical variables
GeoAll01: graph variables for the entire graph and connected 
components
KinGeoAll01: all of the above

GeoAll01
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NN CUT CRITERIA: S IGNIF ICANCE GAIN

• Optimization made on signal with m1 	= 	300	GeV	and 
m2 	= 	3	TeV

• Significance 13 computed on each bin of invariant mass 
!0 distribution

13 = 2 33 + 53 ln 1 + 33
53
	 − 33

• Global significance : = ∑3 13(
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Cut Gain

Geo01 0.6 1.1

Kin 0.9 1.2

GeoAll01 0.7 1.2

KinGeoAll01 0.9 1.2

<<45)

Significance Gain

Geo01: graph variables for connected components

Kin: kinematical variables

GeoAll01: graph variables for the entire graph and connected components

KinGeoAll01: all of the above

:45)
:"566

E%	[K;I]



!!-./01  AND "2  DISTRIBUTION WITH CUT IN !!-./01
The plot displays the distribution of ATLAS background and the signal sample (!7 = 300 $%&,!0 = 3 >%&) using the cut
on the score associated with various combinations of features.
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EXPECTED YXH 
UPPER LIMIT 

CROSS SECTION 
RATIO AT 95% 
CONFIDENCE 

LEVEL

Ratio between the expected 
upper limit cross section 
without any cut and 
expected upper limit cross 
section with best cut

IJ = N4566
N758
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Training signal point
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Kin

1.0	 1.25	 1.5	 1.75	 2

Kin: kinematical variables
Geo01: graph variables for 
connected components
GeoAll01: graph variables for the 
entire graph and connected 
components
KinGeoAll01: all of the above
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Ratio between DNN with both 
kinematical and graph features 
and DNN with kinematical 
features expected upper limit 
cross section.

Many of the working points 
below ?< = @AAA	BCD  show 
an improvement.

The improvement is poorer at 
high values of m2, as the DNN 
with graph variables helps 
remove the background in the 
region with low m2.

EXPECTED YXH UPPER LIMIT CROSS SECTION GAIN AT 95% CL – 
EFFECT OF GEOMETRIC FEATURES
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CONCLUSIONS

• Different DNN architectures tested using different combinations of kinematical 
and graph features.

• Geometric representation of jets as graphs, provide good discriminant power.

• Combination of kinematical and geometric information (KinGeoAll01) provide 
best results.

• A dedicated training on each point can probably lead to better performance

• Potential future applications involve the use of Graph Neural Network 
architectures with unsupervised approach.
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GRAZIE PER L’ATTENZIONE
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BACKUP
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STANDARD MODEL

• Model of particle physics that best 
describes current observations
• 6 quarks;

• 3 leptons and 3 neutrinos;

• 6 bosons.

• …and respectively anti-particles

• Limits
• It has 19 free parameters;

• Do not take into account neutrinos masses or 
other cosmological phenomena

21



HEAVY VECTOR TRIPLETS

• Heavy Vector Triplets is a class of particle classified with a particularly high mass – at least 
1.5	567 – described with a set of 3 vector, spin-1 bosons:

• 2 charged 

• 1 neutral

• The properties of these particles are:

• C9: the field eigenstates, with F = 1, 2, 3
• C9± =

<&$∓><&%
?  and C9@ = C9A as the charge eigenstates

• Note:

• This can describe the system of G and H as other set of particles

• Field eigenstates are not mass eigenstates

22



GRAPH THEORY

Graphs G = (V, E) consist of vertices (nodes v ∈ V) that represent entities 
and edges (connections e ∈ E) that represent relationships between the 
vertices. The adjacency matrix J is used to describe a graph

• Clustering Coefficient C6 =
!|{1BC:	RB,	RC	∈	U(,	1BC	∈	V}|

X((X(CZ)	

• Degree	dR= ∑\∈]AR\
• Diameter: the length of the shortest path between the most distanced nodes;

• Connected components N*+,-.: subgraphs that we can isolate in a graph

• Number of nodes N/+01.: the actual number of vertices of a graph or a 
component

Graphs created using jet constituents up to 40 as nodes:

• p2345*, η, ϕ 6	used as node features for constituent i → p2345* = -'
(

-'
DED

• Edges defined with a criteria on distance ΔR  between two nodes 
ΔR(const6, const7)

23

G

E

B
L H

K

D

I

FJ

C

N

A

O

M

TR

Q

P

U

S
R

Z

Y

X
W

V

5) = 3
7) =

1
3

9*+,-. = 10

9/+01. = 3
diam G = 7

D

R
X

W

V

B
N

A
M

T ΔR-./ = 0.1
ΔR T, N = 0.25 > ΔR-./ → NO edge
ΔR A, N = 0.07 < ΔR-./ → edge

J =

0	
1	
0	
0	
0	

1	
0	
1	
0	
0	

0	
1	
0	
1	
1	

0	
0	
1	
0	
1	

0
	0
	1
	1
	0

V  W  X  R  D

V
W
X
R
D



DEEP NEURAL NETWORK 
(DNN) SUPERVISED

Artificial Neural Network with multiple hidden layers. The depth of the 
network enables it to capture complex patterns. 

Goal of the training is to minimize the loss function that define the 
discrepancy between the real label and the prevision in a classifier task.

Area Under the ROC Curve and Accuracy score used as metrics in 
classification task.

4 NN architectures that differ from each other by the number of nodes 
per layer and number of layers. 
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Input Hidden 1 Hidden 2 Hidden 3 Hidden 4 Output

5' 5'×3 5'×6 5'×6 5'×3 1
7( 7(×8 7(×9: 7(×9: 7(×8 9
5' 5'×8 5'×16 5'×16 5'×8 1

Architecture 1
Architecture 2

Architecture 3 Architecture 4



DNN TRAINING
HYPERPARAMETERS 
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Parameter Value

Optimizer Adam

Jet Transformation Yes, No

Loss function Binary Cross Entropy

Learning rate 10'(, 10'), 10'*, ^%'+, 10',

Batch size 4, 8, 16, LM, 64
Epochs 50, 100, 200, LNN

Validation Fraction 10%, ^`%, 20%, 25%, 30%

Hyperparameter Tuning

Comparison 
between the 
use of Jet 
Transformation 
on accuracy 
score and loss 
function

Jet Transformation to create graphs. Deep 
learning techniques are very capable to learn 
features with a large correlation in jet masses 
and QCD background have a wide spread 
distribution over the mass → bias over the 
mass



! → #$  IN HADRONIC FINAL STATES

o Higgs identification with T=<< NN score

o Completely data-driven Machine Learning 
technique to estimate QCD background

o Anomaly detection discovery region introduced with 
novel data-driven anomaly score (AS) using ML

26

Observed p-values across all E% and 
E& bins in the Anomaly signal region



HADRONIC CALORIMETER (HCAL) 
AND JET RECONSTRUCTION
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Jets reconstructed using tracks in ID, calorimeter 
deposits and anti-U> algorithm.
• Tile HCAL: 14	mm of iron absorber alternated to a 
3	mm sparkling plates, in bunches;

• Liquid Argon end-cap HCAL: copper and tungsten as 
absorbers and LAr as active component.

Pseudorapidity range Energy resolution )#*

a < 3.0
50%
c
⨁3%

3.0 < a < 4.9
100%
c

⨁10%

Anti- k?  reconstruction algorithm takes topoclusters 
(clusters of energy deposits in the calorimeters) as input 
and combine them to form jet cones with characteristic 
radius R using a distance parameter.

Energy resolution HCAL



DNN WITH GRAPH FEATURES
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KinGeoAll01
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p$ Jet
Average clustering coefficient
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η Jet
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Different feature combinations using kinematical and 
geometrical features.

0 and 1 refers to the first and the second component 
of the graph, ordered by number of nodes.

LHC Olympics 2020



LHC OLYMPICS 2020

Preliminary test on graph representation 
features.

4 NN architectures that differ from each other by the 
number of nodes per layer and number of layers. 

Architecture 2: best compromise between performance 
and use of computational resources.
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Particle Mass

f’ 3.5 TeV

h 500 GeV

i 100 GeV

Welcome to the home of the LHC Olympics 2020! Type Process

Background QCD dijet

Signal f- → hi → kll	kll

Type Training Test

Data 10 603 143 806

Signal 10 601 2 650

Number 
of 

events

Result: a graph representation 
of jets can be useful to perform 
signal/background discrimination 
for the kinds of BSM processes 
treated. 

Architecture 2: best 
compromise between 

performance and use of 
computational resources.

https://github.com/LHCO2020/homepage


YXH
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Type Process

Data ATLAS data QCD dijet

Signal MC simulation 
(36.1	-."#) / → 12 → 3443..

Data −	50K events (~0.7% of the available)

Signal −	17K events

• Nm = 3000	OPQ, Nn = 300	OPQ
• Merged regime oF

oG
= 0.1 < 0.3 kinematic limit

Maximum number of nodes in a graph set to 40 – other nodes would not 
provide much more information and use computational time resources.



JET CONSTITUENTS TRANSFORMATION

QCD-dijet data have a wide spread distribution 
over their mass and jets with a greater mass 
would be more important in the training, without 
any justified reason.

Transformation over jet constituents: 

• Rescaling the jets: m7 → mp = 0.25	GeV
• Lorentz boost on jets: E7 → Ep = 1	GeV
• Rotation of constituents: η7 → ηp = 0 and 

ϕ7 → ϕp = 0. 

The effect of the jet constituents transformation is 
to modify graphs structure and, indirectly, to help 
with features separation improving the training 
performance.
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Transformation

A robust anomaly finder based on autoencoders
NO Transformation
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https://doi.org/10.48550/arXiv.1903.02032


LOW-LEVEL VS HIGH-LEVEL FEATURES
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“A set of features with basic information (low-level) such as information coming directly from the detectors, 
implies better performances with respect to features built combining basic information (high-level)”

RNN 
performance

Searching for exotic particles in high-energy physics with deep learning

http://dx.doi.org/10.1038/ncomms5308


GRAPH THEORY

• Graphs are mathematical structures used to model pairwise relationships 
between objects.

• 8 = (7, 5, ;)
• C set of nodes

• E set of relations between edges

• Q set of edges

• Graphs consist of vertices (nodes) that represent entities or elements 
within a system and edges (connections) that represent relationships the 
vertices.

• Types of Graphs:

• Directed Graphs: edges have a direction, indicating a one-way relationship 
between vertices.

• Undirected Graphs: edges have no direction, indicating a symmetric 
relationship between vertices.

• Understanding graph theory provides valuable insights into the structure 
and relationships within complex systems, enabling the development of 
efficient algorithms and solutions across diverse domains.
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!  BOSON SELECTION

• Based on the output scores (probabilities of tagging as 
Higgs, top or multijet) of a NN assigned to each jet. 

• 2q(rrs 
• 2tuv
• 2owxt(yzt

• Scores are combined in a unique value X@== for each jet.

• VqHH = ln vIJKKL
{8MN	v8MN	|(ZC{8MN)	vO568JPQ8

 ;

• Xtuv define the weight of the top background shape.

• Higher scores correspond to jets that are more likely to 
originate from Higgs to bb decays.
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#  BOSON SELECTION

• Once the H candidate is selected, the other of the two 
leading jet is automatically defined as X candidate. The X 
boson can be identified as one large-R jet or two small-R jet 
depending on masses ratio.

• Merged

• If the mass ratio between X and Y resonances is small (<0.3) 
the X resonance is reconstructed via large-R jet  

• Resolved
• For larger masses ratio the decay products are no longer 

collimated and the resonance is reconstructed via small-R 
jets.

• At least 4 small radius jets are required in the event; 

• Small jet pair with the minimum ∆R from the 
Higgs candidate (reconstructed as large-R 
jet) are discarded; 

• In the remaining jet collection, the X 
candidate is reconstructed taking the YA 
leading and subleading.
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Z ∼ 2!
YA


