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ATLAS

EXPERIMENT

Summary: a8

Motivations;

Machine learning and Graph Theory;
Analysis of fully hadronic final state (Y - XH — qqbb) with ATLAS data;

Results.

Goal:

To evaluate the effectiveness of the graph representation of jets to train a neural
network for signal/background classification.




ANOMALY DETECTION (AD)
OVERVIEW

Standard Model describes all fundamental particles. However, there are still some questions
that remain unanswered (dark matter, neutrino masses, etc.).

Some extensions, called Beyond Standard Model (BSM) theories, have been introduced to
solve these limits.

Extra Dimensions

Theories of

. . . . .. . Dark Matter
AD techniques can be designed to do experiments with minimal assumptions (model-

independency) for BSM searches.

AD aims to identify unexpected deviations or unusual patterns in data, potentially indicating
new information or anomalous behavior.

Axion-like Particles

Measurements Searches
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Y - XH IN HADRONIC FINAL STATES

Phys. Rev. D 108, 052009 — Published 18 September 2023

o First Anomaly Detection application in unsupervised approach in ATLAS
o Heavy Vector Triplet model-based

o Analysis performed on full Run-2 dataset (L =139fb!) with data
collected at /s = 13 TeV collisions with the ATLAS detector.

o Boosted and Resolved regime depending on mass r'atlo:m—X
Y

q q . ¢/
QCD di-jets (~97% background) YXH (signal)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.052009

M OT IVAT I o N S Searching fo'r Exo.tic Particles in 'High-

Energy Physics with Deep Learning

A set of features with basic information (low-level) such as information
_coming directly from the detectors implies better performances wrt
features built combining basic information (high-level).

Goal: to study graph representation of low-level features
(variables) such as jets constituents. .
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3 s W % Traditional architectures, assume a geometrically stable
] %) -------- DN lo+hi-level (AUC=0.88) "-_': data organization.

0.4 R : 2 2 2

o Energy deposits of the constituents in calorimeters
........ DN lo-level (AUC=0.88) Why graphs? NG o

02 i often exhibit sparse data characteristics.

| DN hidevel  (AUG=0.80) Geometrical deep learning architectures, like GNNs,

Lo have demonstrated enhanced learning capabilities and

Signal efficiency performance on such data type.



https://arxiv.org/abs/1402.4735
https://arxiv.org/abs/1402.4735

GRAPH THEORY

Ncomps =3 p .
= 1
Graphs G = (V,E) consist of vertices (nodes v € V) that represent entities @ ‘ Cr ==
and (connections e € E) that represent relationships between the ®
vertices. V) ® o
* Clustering Coefficient C;: measure of the tendency of nodes to cluster together; © )
* Degree dg number of edges; ©

* Diameter diam(G): the length of the shortest path between the most distanced
nodes; Q

* Connected components Ncomps: subgraphs that we can isolate in a graph ®

@
* Number of nodes Npgges: the actual number of vertices of a graph or a ® @ ® ® |

component @
& ™

Graphs created using up to 40 jet constituents as nodes:

i
. (prfrrac,n, cl))i used as node features for constituent i — pira¢ = g—T

T
* Edges defined with a criteria on distance AR between two nodes .

AR(const;, const;)
@ @ AR.x = 0.1
@ AR(T,N) = 0.25 > AR ,,x — NO edge
@ AR(A,N) = 0.07 < AR,,,x — edge




DNN AND Supervised approach: event labels aware — Accuracy
GRAPH Area Under the ROC Curve and Accuracy score used |%?]
FEATURES as metrics in classification task with DNN. 07001
0.675 1
Perfect
classifier [OC curve 0.650 1
1.0e
Cut 0.625 1
& 0.6001
Negati Positives § | —— Training
SEEE g 0.575 —— Validation
TP true positives g 0 50 100 150 200 250 300
FP false positives 8_ Epoch
TN true negatives o
FN false negatives =

All Components

0.0 0.5 1.0 Component |
False positive rate

Different feature combinations using kinematical and geometrical features.
and | refers to the and the second component of the graph,

ordered by number of nodes.

¢ [in: kinematical variables

* Geo0l:graph variables for connected components

* GeoAllOl: graph variables for the entire graph and connected
components

* KinGeoAllOl:all of the above




BENCHMARK RESULTS 1 Hyperparameters
Welcome to the home of the LHC Olympics 2020! ;

. . Optimizer ADAM
Preliminary test on graph : _
representation  features W e ; Loss function Binary Cross Entropy
using a dataset with QCD Learning rate 107°
background and full Batch size 32
hadronic final state as signal Epochs 300
4 NN architectures that differ g Validation Fraction 15%
from each other by
complexity.

827
8 0.825 - ( 0 822\ @826 ¢
6 0.820 A '
2 0.815
) 0.810 1
Results:
|. A graph representation of jets can be useful to perform e
signal/background discrimination for the kinds of BSM —
processes treated. %791 @793
2. The best architecture has been chosen with the best > ch 2 ch 3 ch A
compromise in performance (ROC AUC) and time per 1s 2 4s 5s
epoch - epoch epoch - epoch epoch

J



https://github.com/LHCO2020/homepage

Y - XH - qq bb
| Type | Process | Events_

]l

Data ATLAS data QCD dijet 50 k
. MC simulati _ =
Signal " 2 ;_'{“;ba_'f)’“ Y > XH - gqbb 17 k v
Preselection over the events
m; ,mj, > 50 GelV
Leading large-R jet pr > 500 GeV

Graphs created with a jet transformation. Deep
learning techniques are capable to learn features
with a large correlation in jet masses and
QCD background have a wide spread distribution

over the mass — bias over the mass
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FEATURE COMBINATION RESULTS

True Positive Rate

GeoAllo|
100<
Using only geometric features show good results in deep neural L
network performance. 5 101)
©
As expected, using kinematic features show good discriminative
Power' 107 ] data
[ sig
Adding the geometric variables to the kinematic ones slightly 00 o1 02 03 o4 o5 06 07 08 03 1o
improves the discriminant power.
KinGeoAllO|
1014
1.0-
100<
>
©
0-8' 10-1
0.6 10724 [ data
[ sig
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NNSCOF&‘
0.4
—— AUC Geo0O1 = 0.7791 . 8
A Geo01l:graph variables for connected components
0-21 —— AUC GeoAll01 = 0.8127 : kinematical variables
—_— i 101 = 0. . .
A e~ 7% || GeoAllOI: graph variables for the entire graph and connected
0.0 --- Perfect Classifier components
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False Positive Rate °



NN CUT CRITERIA: SIGNIFICANCE GAIN

Optimization made on signal with my = 300 GeV and
my = 3 TeV

Significance 0; computed on each bin of invariant mass
my distribution
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NNgepre AND my DISTRIBUTION WITH CUT IN NNy pre

The plot displays the distribution of ATLAS background and the signal sample (my = 300 GeV, my = 3 TeV) using the cut
on the score associated with various combinations of features.
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EXPECTED YXH UPPER LIMIT CROSS SECTION GAIN AT 95% CL —
EFFECT OF GEOMETRIC FEATURES
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Ratio between DNN with both 13
kinematical and graph features 60 00 O 0 O O O /@fﬂ 440 o
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features expected upper limit
cross section. 01 ©® & © 060 & ©& o706 ¢ ® N
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. E34y XTDOOOOOOOEPO O O

an improvement. 2
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The improvement is poorer at E;S; mggggg%gg% © o O
hl.gh values of my,. as the DNN 0. C(CB:.88888 0O e
with  graph variables helps 15| CESSE® O FO O
remove the background in the 121 d
region with low my. BRERE 8388858888 § § § B 8§ : |




CONCLUSIONS

Different DNN architectures tested using different combinations of kinematical
and graph features.

Geometric representation of jets as graphs, provide good discriminant power.

Combination of kinematical and geometric information (KinGeoAllOl) provide
best results.

A dedicated training on each point can probably lead to better performance

Potential future applications involve the use of Graph Neural Network
architectures with unsupervised approach.
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STANDARD MODEL

Model of particle physics that best
describes current observations

6 quarks;

3 leptons and 3 neutrinos;

6 bosons.

...and respectively anti-particles
Limits

It has |9 free parameters;

Do not take into account neutrinos masses or
other cosmological phenomena
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HEAVY VECTOR TRIPLETS

Heavy Vector Triplets is a class of particle classified with a particularly high mass — at least
1.5 TeV — described with a set of 3 vector, spin-1 bosons:

2 charged
| neutral
The properties of these particles are:

Vﬂa the field eigenstates, with a = 1, 2, 3
ViFivg

V2

VE = and V) = V? as the charge eigenstates
Note:
This can describe the system of W and Z as other set of particles

Field eigenstates are not mass eigenstates




VW X RD
GRAPH THEORY @ ;

Graphs G = (V,E) consist of vertices (nodes v € V) that represent entities 0
and (connections e € E) that represent relationships between the 0010
vertices.The A is used to describe a graph @ @
2|{ejn: uj, up € Nj, ejn € E}| ]
kj(ki-1)

|
o
o
o
o
O»m X 3 <

* Clustering Coefficient C; =

Ncomps =3
* Degree dy= XyevAuv drp =3 1

* Diameter: the length of the shortest path between the most distanced nodes; W

* Connected components N¢omps: subgraphs that we can isolate in a graph O ® ®

* Number of nodes Ny,ges: the actual number of vertices of a graph or a OmV
component ®)

Graphs created using jet constituents up to 40 as nodes: € (®

frac p'iI‘ @

oM, (I))i used as node features for constituenti — pt°" = Dot @

* Edges defined with a criteria on distance AR between two nodes ® © ® (B
AR(const;, const;

i ]) @ @ @

@ @ AR, ., = 0.1 ©

™) AR(T,N) = 0.25 > AR ., — NO edge @

@ AR(A,N) = 0.07 < AR,,,x — edge

frac

¢ (pT




DEEP NEURAL NETWORK e
(DNN) SUPERVISED

Z

Architecture 4

 Architecture 3

Artificial Neural Network with multiple hidden layers. The depth of the

network enables it to capture complex patterns.

Architecture |
Goal of the training is to minimize the loss function that define the

discrepancy between the real label and the prevision in a classifier task.

Area Under the ROC Curve and Accuracy score used as metrics in

Ny Ny X3 Ny X6 N X6 Npx3 1
lassification task
4 NN architectures that differ from each other by the number of nodes  »; Nyx8 Nyx16  Npx16 Nyx8 1
per layer and number of layers.
Accuracy Loss 10 Receiver Operating Characteristic (ROC)
0.7251 z
0.68 1 —— Training g
0.700 —— \Validation 1‘6 08
0.66 - -
0.675 o
064 2 0]
0.650 2
0.62 1 o
0.625 $ 0.4
0.60 - =
0.600 1
0.575- —— Training > . — AUC=0.78
) —— Validation 0.56 1 //' ---- random chance
T T T T T T T T T T T T T T 0_0 z T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0.0 0.2 0.4 0.6 0.8 1.0
Epoch Epoch False Positive Rate(FPR)




DNN TRAINING
HYPERPARAMETERS

Hyperparameter Tuning

Parameter Value

Optimizer Adam
Jet Transformation Yes, No
Loss function Binary Cross Entropy
1073,107*,107%,10°°,1077
4,8,16,32,64
50,100, 200,300

10%, 15%, 20%, 25%, 30%

Learning rate
Batch size
Epochs

Validation Fraction

Jet Transformation to create graphs. Deep
learning techniques are very capable to learn
features with a large correlation in jet masses
and QCD background have a wide spread
distribution over the mass — bias over the
mass

Comparison
between the
use of Jet
Transformation
on  accuracy
score and loss
function

e Val noT AR < 0.1

—— Train TAR<O0.1
—— ValTAR<O0.1
-------- Train noT AR < 0.1

40

GeoAllOl1

60 80

100
Epoch

GeoAllOl

—— TrainTAR<O
—— ValTAR<O0.1

1

-------- Train noT AR <0.1
-------- Val noT AR<0.1

40

60 80

100
Epoch




Y - XH IN HADRONIC FINAL STATES

o Higgs identification with Dy NN score

o Completely  data-driven Machine Learning
technique to estimate QCD background

o Anomaly detection discovery region introduced with
novel data-driven anomaly score (AS) using ML

Observed p-values across all my and

my [GeV]

my bins in the Anomaly signal region
ATLAS
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HADRONIC CALORIMETER (HCAL)
AND JET RECONSTRUCTION

Tile barrel Tile extended barrel

LAr hadronic ’ b
Jets reconstructed using tracks in ID, calorimeter| "M QN7
deposits and anti-k algorithm. LAr electromagnetic

° . end-cap (EMEC) —m8M8M8—
Tile HCAL: 14 mm of iron absorber alternated to a ° RN
3 mm sparkling plates, in bunches;

Liquid Argon end-cap HCAL: copper and tungsten as
absorbers and LAr as active component.

““““
....

LAr eleciromagnetic
barrel

0.55 Energy resolution HCAL
A n — .

/ n=oss
900 2n
0 = 60° / n=1.32 50% \‘

e Il < 3.0 7= ©3% .
g =30 3.0 < [n] < 4.9 109% ©10%
= 2.43 VE ol
0 =10° . u
9:00—Z>?7=+oo T

o[
Anti- Kt reconstruction algorithm takes topoclusters 21043 _
(clusters of energy deposits in the calorimeters) as input ITOZ | & e
and combine them to form jet cones with characteristic |
radius R using a distance parameter.

................................
....................

10 | s

pr[GeV]

<10°




DNN WITH GRAPH FEATURES

LHC Olympics 2020

Different feature combinations using kinematical and
geometrical features.

and | refers to the and the component
of the graph, ordered by number of nodes.
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LHC OLYMPICS 2020
q
Welcome to the home of the LHC Olympics 2020! m :

Background QCD dijet i
Preliminary test on graph representation Signal W' - XY - Gq qq y !
features. I
4 NN architectures that differ from each other by the ﬁm? X
number of nodes per layer and number of layers. Tq
X 500 GeV
: best compromise between performance Y 100 GeV .

and use of computational resources.

. . Test metrics
N 527

oars @826
of  Data 10 603 143 806 ' 0.822
events Signal 10 601 2 650

ROC AUC

0.820 +

0.815 A

. 0.810 -
Result: a graph representation

of jets can be useful to perform
S|gnaI/bacI.<ground discrimination performance and use of .
for the kinds of BSM processes computational resources. | | €793

treated. arch arch 2 srch 3 arch

: best
compromise between

0.805 -
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https://github.com/LHCO2020/homepage

Y XH

b
| Type | Process |
Data ATLAS data QCD dijet P b
. MC simulati - -
Signal S 65_'{“;;_“1‘;" Y = XH - gqbb Y
X ]
q
Data — 50k events (~0.7% of the available)
Signal — 17k events q
* my = 3000 GeV, my = 300 GeV
m

X = 0.1 < 0.3 kinematic limit

* Merged regime y

Maximum number of nodes in a graph set to 40 — other nodes would not
provide much more information and use computational time resources.
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JET CONSTITUENTS TRANSFORMATION

A robust anomaly finder based on autoencoders

QCD-dijet data have a wide spread distribution
over their mass and jets with a greater mass
would be more important in the training, without
any justified reason.

Transformation over jet constituents:
* Rescaling the jets:m; - m = 0.25 GeV
* Lorentz boost on jets: E; - Eg = 1 GeV

* Rotation of constituents: n; — 1y = 0 and
$j = ¢o = 0.

The effect of the jet constituents transformation is
to modify graphs structure and, indirectly, to help
with features separation improving the training
performance.
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https://doi.org/10.48550/arXiv.1903.02032

LOW-LEVEL VS HIGH-LEVEL FEATURES

“A set of features with basic information (low-level) such as information coming directly from the detectors,
implies better performances with respect to features built combining basic information (high-level)’
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Searching for exotic particles in high-energy physics with deep learning



http://dx.doi.org/10.1038/ncomms5308

GRAPH THEORY

Graphs are mathematical structures used to model pairwise relationships
between objects.

G=,TE)
V set of nodes
T set of relations between edges
E set of edges

Graphs consist of vertices (nodes) that represent entities or elements
within a system and edges (connections) that represent relationships the
vertices.

Types of Graphs:

Directed Graphs: edges have a direction, indicating a one-way relationship
between vertices.

Undirected Graphs: edges have no direction, indicating a symmetric
relationship between vertices.

Understanding graph theory provides valuable insights into the structure
and relationships within complex systems, enabling the development of
efficient algorithms and solutions across diverse domains.
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H BOSON SELECTION

Based on the output scores (probabilities of tagging as L 004 T T T T T T T T T
Higgs, top or multijet) of a NN assigned to each jet. 2 0.035F- 8::’:;”:‘::4 ks
O E Dropuau:hoc E
PHiggs % 0.03:— =
© - 5
Ptop 2 0025 E
0.02F- =
pmultuet 0-0155_ _;
Scores are combined in a unique value Dy, for each jet. 0.01 =
PHiggs 0.005F- -
D = In ; = =
Hpp ftop Prop +(1—ftop) Pmultijet 0 = ]

. . 6 4 -2 0 2 4 6
ftop define the weight of the top background shape. Do f =025

Higher scores correspond to jets that are more likely to
originate from Higgs to bb decays.




X BOSON SELECTION

Once the H candidate is selected, the other of the two
leading jet is automatically defined as X candidate. The X

boson can be identified as one large-R jet or two small-R jet
depending on masses ratio.

Merged

If the mass ratio between X andY resonances is small (<0.3)
the X resonance is reconstructed via large-R jet

Resolved

For larger masses ratio the decay products are no longer
collimated and the resonance is reconstructed via small-R
jets.

At least 4 small radius jets are required in the event;

Small jet pair with the minimum AR from the
Higgs candidate (reconstructed as large-R
jet) are discarded;

In the remaining jet collection, the X
candidate is reconstructed taking the pr
leading and subleading.




