Search for the Standard Model Higgs Boson in the yy Channel with 4.9 fb⁻¹ Data at 7 TeV with ATLAS

Haichen Wang

University of Wisconsin-Madison on behalf of the ATLAS collaboration

XXVI Recontres de Physique de La Vallee d'Aoste

La Thuile, Italy March 1st, 2012

1

Introduction

Searches for a Higgs boson have been carried out by several experiments, namely, LEP, Tevatron and LHC.

At the LHC, the Higgs to $\gamma\gamma$ channel is the one of the most sensitive channels in the low M_H region. In addition, it allows to reconstruct the Higgs mass.

Production and decay

Signature

The resolution for a diphoton event with $M_{\gamma\gamma} \sim 120 \text{GeV}$ is ~ 2 GeV, with ~ 14% uncertainty.

 \sim 60% of diphoton candidates have at least one converted photon, which has been calibrated separately.

Selected sample

Selection:

 $E_{T\gamma1}>40~GeV$, $E_{T\gamma2}>25~GeV$

lηl < 2.37, and not between (1.37, 1.52)

Isolation energy < 5 GeV

Photon identification

22489 candidate events were selected.

Expected number of signal events for $M_H = 125 GeV \sim 70$ (~13% experimental uncertainty, ~15% theoretical uncertainty)

Backgrounds are:

SM γγ production(~71%) γ+jets (~23%) dijet (~5%) Drell Yan (~0.7%)

Search strategy

Categorization of events

Divide the sample into categories that have different S/B and invariant mass resolution.

Using more detailed information improves sensitivity.

Variables used to categorize events

Conversion status : difference in σ_m and background rejection.

 η of photon candidate(calorimeter regions) : difference in σ_m

 p_{Tt} (transverse component of p_{TYY} wrt thrust axis) :

ggF, a larger tail compared to background.

high $p_{\mathsf{T}t}$ for VBF and VH

interpret the data.

Significance of excess

The search is carried out between 110 GeV and 150 GeV with a step of 0.5GeV.

The largest excess : 2.8 σ at 126.5GeV, $\mu \sim$ 2.0 times SM prediction.

The significance drops to 1.5σ , if look elsewhere effect is considered. (the probability of such excess appearing anywhere in the mass range investigated)

This channel looked in isolation is not significant enough.

Improvement due to categorization

The data is also interpreted by only using η -conversion categorization, or without any categorization.

The expected significance is improved due to categorization.

Interesting hint: the observation happens to be also improved by categorization.

Limit on Higgs boson cross section

The expected limit is around 1.6 times the SM cross section for $M_H < 130$ GeV, and up to 2.7 for the full mass range.

The observed limit lies between 0.84 and 3.6 times the SM cross section.

A SM Higgs boson is excluded at 95% CL in the mass ranges of 113 - 115 GeV and 134.5 - 136 GeV.

In the big picture

The major channels, γγ(4.9 fb-1), 4I(4.9 fb-1), and IvIv(2.05 fb-1) have comparable sensitivities around 126GeV.

The $\gamma\gamma$ excess is in coincidence with a smaller 4l excess, leading to a 3.5 σ excess in the Higgs combination.

Conclusion

- 2011 data gave us very exciting results:
 - Higgs to γγ channel starts excluding SM Higgs boson in certain mass ranges (113 - 115 GeV and 134.5 - 136 GeV).
 - An excess at 126.5 GeV, with 2.8σ local significance is found. It's in coincidence with a smaller excess from 4l channel, leading to a 3.5σ excess in the combination of Higgs searches.
- Outlook for 2012:
 - Further improve our analysis.
 - Given the expectation of collecting 20 fb⁻¹ data at 8 TeV in 2012, a complete exclusion of low mass <u>SM</u> Higgs boson or a possible observation of <u>SM</u> Higgs is within the reach of the γγ channel.

Back up

Breakdown of categories

Category	$\sigma_{\rm CB}$	FWHM	N_{S}	N_{D}	S/B
Unconverted central, low $p_{\rm Tt}$	1.4	3.4	9.1	1763	0.05
Unconverted central, high $p_{\rm Tt}$	1.4	3.3	2.6	235	0.11
Unconverted rest, low $p_{\rm Tt}$	1.7	4.0	17.7	6234	0.02
Unconverted rest, high $p_{\rm Tt}$	1.6	3.9	4.7	1006	0.04
Converted central, low $p_{\rm Tt}$	1.6	3.9	6.0	1318	0.03
Converted central, high $p_{\rm Tt}$	1.5	3.6	1.7	184	0.08
Converted rest, low p_{Tt}	2.0	4.7	17.0	7311	0.01
Converted rest, high $p_{\rm Tt}$	1.9	4.5	4.8	1072	0.03
Converted transition	2.3	5.9	8.5	3366	0.01
All categories	1.7	4.1	72.1	22489	0.02

The statistical treatment

Profiled likelihood ratio is used to calculate p_0 -value/significance of excess, and the limit on signal strength μ (σ/σ_{SM})

$$\tilde{q}_{\mu} = -2\ln \frac{\mathcal{L}(\text{data}|\mu, \hat{\theta}_{\mu})}{\mathcal{L}(\text{data}|\hat{\mu}, \hat{\theta})} = \frac{\mu S + B \text{ hypothesis } (\mu \text{ fixed}) \text{ conditioned ML fit}}{\mu S + B \text{ hypothesis } (\mu \text{ free}) \text{ unconditioned ML fit}}$$

The unconditional fit is the same for both discovery and exclusion. In the conditional fit, $\mu = 0$, for discovery, and $\mu = \mu_{test}$.

Systematic uncertainties

Signal	event	yield

Photon reconstruction and identification	$\pm 11\%$
Effect of pileup on photon identification	$\pm 4\%$
Isolation cut efficiency	$\pm 5\%$
Trigger efficiency	$\pm 1\%$
Higgs boson cross section (scales)	$^{+12}_{-8}\%$
Higgs boson cross section (PDF+ α_s)	$\pm 8\%$
Higgs boson p_T modeling	$\pm 1\%$
Luminosity	$\pm 3.9\%$
Signal mass resolution	
Calorimeter energy resolution	$\pm 12\%$
Photon energy calibration	$\pm 6\%$
Effect of pileup on energy resolution	$\pm 3\%$
Photon angular resolution	$\pm 1\%$
Signal mass position	
Photon energy scale	$\pm 0.7 \ {\rm GeV}$
Signal category migration	
Higgs boson p_T modeling	$\pm 8\%$
Conversion rate	$\pm 4.5\%$
Background model	$\pm \left(0.1 - 7.9 \right)$ events