CHARGED LNV/LFV AND NEW PHYSICS

SEARCHES AT THE B FACTORIES

Kevin Flood California Institute of Technology

La Thuile 2012 Feb 26 – Mar 3 2012

Overview

$$\star$$
 B⁺ \rightarrow K⁻/ π ⁻ I⁺ I⁺ (II = ee,µµ) (Babar)

❖ B⁺ → D⁻ I⁺ I⁺ (I =
$$e$$
, μ) (Belle, 2011)

$$\star$$
 B⁺ \rightarrow K⁺/ π ⁺ τ [±] (e, μ)[∓] (Babar)

Search for Dark Higgs (Babar)

^{*} Charge conjugation assumed everywhere except as noted.

BABAR and Belle Detectors

Integrated luminosity of B factories

Belle

LEPTON NUMBER VIOLATION

$$B^+ \rightarrow h^- I^+ I^+$$

Lepton number violation

- \Rightarrow Lepton number is conserved in the SM at low energies, but \Rightarrow Neutrinos have mass, so L_e,L_μ,L_τ can be trivailly violated, but ΣL is conserved
 - Chiral anomalies can violate ΣL
- ⇒ Many theories beyond the SM predict LNV, e.g.

 ⇒ left-right symmetric gauge theories, SO(10) SUSY, R-parity violating models, ...
- \Rightarrow Can probe existence of heavy Majorana neutrino in LNV processes $M_1^+ \rightarrow l^+l^+M_2^-$ at B-factories

Search for LNV in B⁺ \rightarrow K⁻/ π ⁻ I⁺ I⁺ (ee, $\mu\mu$)

Analysis overview

- ⇒ Select two leptons and one hadron to form a B meson
- ⇒ Apply particle identification for leptons and hadron
- \Rightarrow Boosted Decision Trees (BDT) trained to suppress $e^+e^- \to c\overline{c}$ and $e^+e^- \to B\overline{B}$ background

Signal extraction

- Unbinned maximum likelihood fit for signal and combinatoric background
- \Rightarrow Fit R and $m_{es} = (E^{*2}_{beam} p_{B}^{*2})^{1/2}$
- \Rightarrow Signal m_{es} parameters taken from B \rightarrow J/ ψ h data

No signal is observed

Upper limits (90% CL)

BF(
$$B^+ \rightarrow e^+ e^+ \pi^-$$
) < 2.3 x10⁻⁸

BF(
$$B^+ \rightarrow e^+e^+$$
 K⁻) < 3.0 x10⁻⁸

BF(B⁺
$$\rightarrow \mu^{+}\mu^{+}\pi^{-}$$
) < 10.7 x10⁻⁸

BF(
$$B^+ \rightarrow \mu^+ \mu^+ K^-$$
) < 6.7 x10⁻⁸

Upper limit as a function of I⁺h⁻ mass ("Majorana neutrino mass")

Current limits for B decays

LHCb²:

CLEO¹: BF (B⁺
$$\rightarrow$$
 h⁻ l⁺ l'⁺) < (1.0 – 8.3) x 10⁻⁶

BF (B⁺
$$\rightarrow$$
 X⁻ μ ⁺ μ ⁺) < 1.3 x 10⁻⁸ - 2.6 x 10⁻⁶ X⁻ = D^{-(*)}, D⁻_S, π ⁻, D⁰ π ⁻; with 41 pb⁻¹

$$h = \pi, K^{(*)}, ρ$$

$$X^{-} = D^{-(*)}, D^{-}_{s}, \pi^{-}, D^{0}\pi^{-}; \text{ with 41 pb}^{-1}$$

1. PRD 65, 111102 (2002) 2. arXiv:1201.5600

Blinding box

 \Rightarrow Likelihood event selection using missing energy, event shape parameters, doca-z of lepton pair, $\cos\theta_B^*$

- \Rightarrow Reconstructs D⁻ \rightarrow K⁺ π ⁻ π ⁻
- ⇒ Backgrounds from kinematic sidebands

Mode	ϵ [%]	$N_{ m obs}$	$N_{ m exp}^{ m bkg}$	U.L. $[10^{-6}]$
$B^+ \to D^- e^+ e^+$	1.2	0	0.18 ± 0.13	< 2.6
$B^+ \to D^- e^+ \mu^+$	1.3	0	0.83 ± 0.29	< 1.8
$B^+ \to D^- \mu^+ \mu^+$	1.9	0	1.44 ± 0.43	< 1.0

LEPTON FLAVOR VIOLATION

$$B^+ \rightarrow K^+/\pi^+ \tau I (I = e, \mu)$$

Lepton Flavor Violation - $B^+ \rightarrow h^+ \tau I$ (I = e, μ) - analysis overview

Study four channels

$$B^+ \to \pi^+ \ \tau \ e \qquad B^+ \to \pi^+ \ \tau \ \mu$$

$$\mbox{B^{+}} \rightarrow \mbox{K^{+}} \ \tau \ \mbox{e} \qquad \mbox{B^{+}} \rightarrow \mbox{K^{+}} \ \tau \ \mu$$

Single-prong τ decays

$$\tau \to e \nu \bar{\nu}$$

$$\tau \to \mu \nu \bar{\nu}$$

$$au
ightarrow \pi^{+} \left(\mathsf{n} \pi^{0} \right) \mathsf{v}$$

Btag is fully reconstructed in hadronic final states

$$\Rightarrow B^- \rightarrow D^{(*)0} X^-$$

$$\Rightarrow$$
 X⁻ = $n_1\pi^- + n_2K^- + n_3K_S + n_4\pi^0$

Reconstruct tau mass using

⇒ tag B, beam energy and signal-side lepton, hadron

$$\Rightarrow$$
 $p_{\tau} = p_B - p_h - p_I$

$$\Rightarrow$$
 $E_{\tau} = E_{beam} - p_h - p_l$

Charmonium di-lepton mass regions vetoed

Signal region is M_{τ} +/- 60 MeV

Background estimated from mass sidebands

D semileptonic backgrounds contribute more to τ^+

$$\Delta \mathcal{L} = \Delta \mathcal{L}_{\tau\mu}^{(6)} = \sum_{j,\alpha,\beta} \frac{\mathcal{C}_{\alpha\beta}^{j}}{\Lambda^{2}} \left(\overline{\mu} \ \Gamma_{j} \ \tau \right) \left(\overline{q}^{\alpha} \ \Gamma_{j} \ q^{\beta} \right) + \text{H.c.} ; \ \Gamma_{j} = (S, P, V, A)$$

,	BF U.L. (90% CL) *
$B^+ \to K^+ au \mu$	$< 4.8 \times 10^{-5}$
$B^+ \to K^+ au e$	$< 3.0 \times 10^{-5}$
$B^+ \to \pi^+ \tau \mu$	$< 7.2 \times 10^{-5}$
$B^+ \to \pi^+ \tau e$	$< 7.5 \times 10^{-5}$

LFV Energy Scale from $B^+ \to K^+ \tau I$ $B^+ \to \pi^+ \tau I$ BABAR Results $\Lambda > 15 \text{ TeV}$ $\Lambda > 11 \text{ TeV}$ (90% CL)

* Assumes BF(B⁺ \rightarrow h⁺ τ ⁻ l⁺) = BF(B⁺ \rightarrow h⁺ τ ⁺ l⁻)

DARK FORCES

Dark sector in a nutshell

Models introducing a **new 'dark' force** mediated by a **new gauge boson with a mass around a GeV** have been proposed to explain the observations of PAMELA, FERMI, DAMA/LIBRA, CREST,...

WIMP-like dark matter particles can **annihilate into pairs of dark bosons**, which subsequently decays to lepton pairs (protons are kinematically forbidden).

FERMI HAZE

Dobler et al., Astrophys.J.717

- Excess of electrons / positrons
- ⇒ Few / no antiprotons
- Large annihilation cross section

- ⇒ New dark sector with a U(1)_D gauge group
- ⇒ New gauge boson: dark photon A' with O(GeV) mass

Standard Model

Dark Sector $G_D \supset U(1)_D$

- ⇒ New dark sector with a U(1)_D gauge group
- ⇒ New gauge boson: dark photon A' with O(GeV) mass
- ⇒ Interaction with the SM is via kinetic mixing

$$\epsilon\, \textbf{F}^{mn}\, \textbf{B}_{mn}$$

with a mixing strength ϵ .

- ⇒ New dark sector with a U(1)_D gauge group
- ⇒ New gauge boson: dark photon A' with O(GeV) mass

$$\varepsilon \, F^{mn} \, B_{mn}$$

with a mixing strength ε.

 \Rightarrow The dark photon acquires a charge εe, and the coupling of the dark photon to SM fermions is characterized by $\alpha' = \alpha ε^2$

PRD 79, 115008, 2009

- ⇒ New dark sector with a U(1)_D gauge group
- ⇒ New gauge boson: dark photon A' with O(GeV) mass

$$\epsilon \, F^{mn} \, B_{mn}$$

with a mixing strength ε .

- \Rightarrow The dark photon acquires a charge εe, and the coupling of the dark photon to SM fermions is characterized by $\alpha' = \alpha ε^2$.
- A dark photon can be readily produced in

$$e^+e^- \rightarrow \gamma A', A' \rightarrow f \overline{f}$$

The limits on $e^+e^- \rightarrow Y(2S,3S) \rightarrow \gamma \mu^+\mu^-$ can be reinterpreted as limits on dark photon production.

J.D. Bjorken et al., PRD 80 (2009) 075018

Constraints on $\alpha'/\alpha = \epsilon^2$

Dark Higgs boson

- □ Dark boson mass is generated via the Higgs mechanism, adding a dark Higgs boson (h') to the theory.
- A minimal scenario has a single dark photon and a single dark Higgs boson. Very well motivated theoretically.
- ⇒ The dark Higgs mass could be at the GeV scale.
- ⇒ The Higgs'-strahlung process

$$e^+e^- \to A^{\prime *} \to h^\prime \ A^\prime$$
 , $h^\prime \to A^\prime \ A^\prime$

is very interesting, as it is **only suppressed by** ϵ^2 and is expected to have a **very small background**.

 $\alpha_D = g_D^2 / 4\pi$ g_D is the dark sector gauge coupling

B. Batell et al., PRD 79 (2009) 115008 R. Essig et al., PRD 80 (2009) 015003

20

Higgs decay topology

21

Fully reconstructed

$$\begin{array}{c} \textbf{e}^+\textbf{e}^- \rightarrow \textbf{h}^\prime \ \textbf{A}^\prime, \ \textbf{h}^\prime \rightarrow \textbf{A}^\prime \ \textbf{A}^\prime \\ \\ \textbf{with} \ \ \textbf{A}^\prime \rightarrow \textbf{e}^+\textbf{e}^-, \ \mu^+\mu^-, \ \ \pi^+\pi^- \end{array}$$

Fully reconstructed signal

⇒ Three dark photons fully reconstructed

Modes included

$$\Rightarrow$$
 e⁺e⁻ \rightarrow (l⁺l⁻) (l⁺l⁻) (l⁺l⁻) l=e, μ

$$\Rightarrow$$
 e⁺e⁻ \rightarrow (l⁺l⁻) (l⁺l⁻) (π ⁺ π ⁻)

$$\Rightarrow$$
 e⁺e⁻ \rightarrow (l⁺l⁻) $(\pi^+\pi^-)$ $(\pi^+\pi^-)$

Selection

- \Rightarrow 6 tracks with an invariant mass m_{tot} > 0.95 \sqrt{s}
- ⇒ apply lepton particle identification
- ⇒ cosine helicity angle of A' → e⁺e⁻ candidates < 0.9
- ⇒ three dark photon candidates have similar mass

Partially reconstructed

$$\begin{array}{c} e^+e^-\to h^\prime~A_1^{\prime}~,~h^\prime\to A_2^{\prime}~A_3^{\prime}\\ \text{with}~~A^\prime_{1,2}\to e^+e^-,~\mu^+\mu^-,~A^\prime_3\to X \end{array}$$

Partially reconstructed signal

- \Rightarrow In the high mass region (m_A > 1.2 GeV), the decay of the dark photon is dominated by A' \rightarrow qq
- ⇒ Reconstruct 2 A' decaying to leptons and 1 A' to qq
- \Rightarrow Reconstruct four-momentum $P_3 = P_{ee} P_1 P_2$

Modes included

$$\Rightarrow$$
 e⁺e⁻ \rightarrow (I⁺I⁻) (μ ⁺ μ ⁻) + X where X is not I⁺I⁻ / π ⁺ π ⁻

Selection

- \Rightarrow apply particle identification for A' \rightarrow l⁺l⁻ decays
- \Rightarrow cosine helicity angle of A' \rightarrow e⁺e⁻ candidates < 0.9
- ⇔ three dark photon candidates have similar mass

- Six events are selected from the full BABAR dataset (517 fb⁻¹)
- Three entries for each event, corresponding to the three possible assignments of the h → A'A' decay
- **⇒** Estimate background from
 - wrong-sign combinations, e.g. $e^+e^- \rightarrow (e^+e^+) (e^-e^-) (\mu^+\mu^-)$
 - sidebands from final sample
 - rate for 6 leptons ~ 100x rate for $4\pi+21$ above 1.5 GeV

No events with 6 leptons, consistent with the pure background hypothesis

Limit on the cross section e⁺e⁻ \rightarrow h' A', h' \rightarrow A' A' in the regime m_H > 2 m_{Δ}

- ⇒ Scan the m_h vs m_A plane, Bayesian limit with uniform prior in cross-section

Extract limits 1 on the product $\alpha_D \epsilon^2$

⇒ Limits on couplings down to a few x 10⁻¹⁰

$$\alpha_D = g_D^2 / 4\pi$$

 g_D is the dark sector gauge coupling

Limit on $\varepsilon^2 = \alpha'/\alpha$ for various Higgs mass (assuming $\alpha_D = \alpha_{em}$)

Substantial improvement over existing limits for $m_{h'} < 5 - 7$ GeV if light dark Higgs boson exists

Summary

- The B-Factories are well-suited to the study of Lepton Number Violation and Lepton Flavor Violation in a wide variety of initial and final states
- Large datasets of B, D and tau decays, excellent lepton identification and kinematic handles from fully reconstructed decays and/or hermiticity have helped in setting LFV and LNV limits approaching 10⁻⁸, competitive (at least for the moment) with LHCb, and complementary to dedicated experiments
- In the little-to-no backgrounds regime currently seen in many of the searches, the ~50-75 ab⁻¹ luminosities projected for the future Belle-II and Super-B "super" flavor factories will allow additional sensitivity up to two orders of magnitude beyond the current limits