CHARGED LNV/LFV AND NEW PHYSICS # **SEARCHES AT THE B FACTORIES** # Kevin Flood California Institute of Technology La Thuile 2012 Feb 26 – Mar 3 2012 # **Overview** $$\star$$ B⁺ \rightarrow K⁻/ π ⁻ I⁺ I⁺ (II = ee,µµ) (Babar) ❖ B⁺ → D⁻ I⁺ I⁺ (I = $$e$$, μ) (Belle, 2011) $$\star$$ B⁺ \rightarrow K⁺/ π ⁺ τ [±] (e, μ)[∓] (Babar) Search for Dark Higgs (Babar) ^{*} Charge conjugation assumed everywhere except as noted. # **BABAR and Belle Detectors** ### **Integrated luminosity of B factories** Belle # **LEPTON NUMBER VIOLATION** $$B^+ \rightarrow h^- I^+ I^+$$ # **Lepton number violation** - \Rightarrow Lepton number is conserved in the SM at low energies, but \Rightarrow Neutrinos have mass, so L_e,L_μ,L_τ can be trivailly violated, but ΣL is conserved - Chiral anomalies can violate ΣL - ⇒ Many theories beyond the SM predict LNV, e.g. ⇒ left-right symmetric gauge theories, SO(10) SUSY, R-parity violating models, ... - \Rightarrow Can probe existence of heavy Majorana neutrino in LNV processes $M_1^+ \rightarrow l^+l^+M_2^-$ at B-factories # Search for LNV in B⁺ \rightarrow K⁻/ π ⁻ I⁺ I⁺ (ee, $\mu\mu$) ### **Analysis overview** - ⇒ Select two leptons and one hadron to form a B meson - ⇒ Apply particle identification for leptons and hadron - \Rightarrow Boosted Decision Trees (BDT) trained to suppress $e^+e^- \to c\overline{c}$ and $e^+e^- \to B\overline{B}$ background ### **Signal extraction** - Unbinned maximum likelihood fit for signal and combinatoric background - \Rightarrow Fit R and $m_{es} = (E^{*2}_{beam} p_{B}^{*2})^{1/2}$ - \Rightarrow Signal m_{es} parameters taken from B \rightarrow J/ ψ h data No signal is observed # **Upper limits (90% CL)** BF($$B^+ \rightarrow e^+ e^+ \pi^-$$) < 2.3 x10⁻⁸ BF($$B^+ \rightarrow e^+e^+$$ K⁻) < 3.0 x10⁻⁸ BF(B⁺ $$\rightarrow \mu^{+}\mu^{+}\pi^{-}$$) < 10.7 x10⁻⁸ BF($$B^+ \rightarrow \mu^+ \mu^+ K^-$$) < 6.7 x10⁻⁸ # Upper limit as a function of I⁺h⁻ mass ("Majorana neutrino mass") # **Current limits for B decays** LHCb²: CLEO¹: BF (B⁺ $$\rightarrow$$ h⁻ l⁺ l'⁺) < (1.0 – 8.3) x 10⁻⁶ BF (B⁺ $$\rightarrow$$ X⁻ μ ⁺ μ ⁺) < 1.3 x 10⁻⁸ - 2.6 x 10⁻⁶ X⁻ = D^{-(*)}, D⁻_S, π ⁻, D⁰ π ⁻; with 41 pb⁻¹ $$h = \pi, K^{(*)}, ρ$$ $$X^{-} = D^{-(*)}, D^{-}_{s}, \pi^{-}, D^{0}\pi^{-}; \text{ with 41 pb}^{-1}$$ 1. PRD 65, 111102 (2002) 2. arXiv:1201.5600 **Blinding box** \Rightarrow Likelihood event selection using missing energy, event shape parameters, doca-z of lepton pair, $\cos\theta_B^*$ - \Rightarrow Reconstructs D⁻ \rightarrow K⁺ π ⁻ π ⁻ - ⇒ Backgrounds from kinematic sidebands | Mode | ϵ [%] | $N_{ m obs}$ | $N_{ m exp}^{ m bkg}$ | U.L. $[10^{-6}]$ | |---------------------------|----------------|--------------|-----------------------|------------------| | $B^+ \to D^- e^+ e^+$ | 1.2 | 0 | 0.18 ± 0.13 | < 2.6 | | $B^+ \to D^- e^+ \mu^+$ | 1.3 | 0 | 0.83 ± 0.29 | < 1.8 | | $B^+ \to D^- \mu^+ \mu^+$ | 1.9 | 0 | 1.44 ± 0.43 | < 1.0 | # **LEPTON FLAVOR VIOLATION** $$B^+ \rightarrow K^+/\pi^+ \tau I (I = e, \mu)$$ # Lepton Flavor Violation - $B^+ \rightarrow h^+ \tau I$ (I = e, μ) - analysis overview # **Study four channels** $$B^+ \to \pi^+ \ \tau \ e \qquad B^+ \to \pi^+ \ \tau \ \mu$$ $$\mbox{B^{+}} \rightarrow \mbox{K^{+}} \ \tau \ \mbox{e} \qquad \mbox{B^{+}} \rightarrow \mbox{K^{+}} \ \tau \ \mu$$ ### Single-prong τ decays $$\tau \to e \nu \bar{\nu}$$ $$\tau \to \mu \nu \bar{\nu}$$ $$au ightarrow \pi^{+} \left(\mathsf{n} \pi^{0} \right) \mathsf{v}$$ Btag is fully reconstructed in hadronic final states $$\Rightarrow B^- \rightarrow D^{(*)0} X^-$$ $$\Rightarrow$$ X⁻ = $n_1\pi^- + n_2K^- + n_3K_S + n_4\pi^0$ Reconstruct tau mass using ⇒ tag B, beam energy and signal-side lepton, hadron $$\Rightarrow$$ $p_{\tau} = p_B - p_h - p_I$ $$\Rightarrow$$ $E_{\tau} = E_{beam} - p_h - p_l$ Charmonium di-lepton mass regions vetoed Signal region is M_{τ} +/- 60 MeV **Background estimated from mass sidebands** D semileptonic backgrounds contribute more to τ^+ $$\Delta \mathcal{L} = \Delta \mathcal{L}_{\tau\mu}^{(6)} = \sum_{j,\alpha,\beta} \frac{\mathcal{C}_{\alpha\beta}^{j}}{\Lambda^{2}} \left(\overline{\mu} \ \Gamma_{j} \ \tau \right) \left(\overline{q}^{\alpha} \ \Gamma_{j} \ q^{\beta} \right) + \text{H.c.} ; \ \Gamma_{j} = (S, P, V, A)$$ # | , | BF U.L. (90% CL) * | |--------------------------|------------------------| | $B^+ \to K^+ au \mu$ | $< 4.8 \times 10^{-5}$ | | $B^+ \to K^+ au e$ | $< 3.0 \times 10^{-5}$ | | $B^+ \to \pi^+ \tau \mu$ | $< 7.2 \times 10^{-5}$ | | $B^+ \to \pi^+ \tau e$ | $< 7.5 \times 10^{-5}$ | LFV Energy Scale from $B^+ \to K^+ \tau I$ $B^+ \to \pi^+ \tau I$ BABAR Results $\Lambda > 15 \text{ TeV}$ $\Lambda > 11 \text{ TeV}$ (90% CL) * Assumes BF(B⁺ \rightarrow h⁺ τ ⁻ l⁺) = BF(B⁺ \rightarrow h⁺ τ ⁺ l⁻) # **DARK FORCES** ### Dark sector in a nutshell Models introducing a **new 'dark' force** mediated by a **new gauge boson with a mass around a GeV** have been proposed to explain the observations of PAMELA, FERMI, DAMA/LIBRA, CREST,... **WIMP-like dark matter** particles can **annihilate into pairs of dark bosons**, which subsequently decays to lepton pairs (protons are kinematically forbidden). #### **FERMI HAZE** Dobler et al., Astrophys.J.717 - Excess of electrons / positrons - ⇒ Few / no antiprotons - Large annihilation cross section - ⇒ New dark sector with a U(1)_D gauge group - ⇒ New gauge boson: dark photon A' with O(GeV) mass Standard Model Dark Sector $G_D \supset U(1)_D$ - ⇒ New dark sector with a U(1)_D gauge group - ⇒ New gauge boson: dark photon A' with O(GeV) mass - ⇒ Interaction with the SM is via kinetic mixing $$\epsilon\, \textbf{F}^{mn}\, \textbf{B}_{mn}$$ with a mixing strength ϵ . - ⇒ New dark sector with a U(1)_D gauge group - ⇒ New gauge boson: dark photon A' with O(GeV) mass $$\varepsilon \, F^{mn} \, B_{mn}$$ with a mixing strength ε. \Rightarrow The dark photon acquires a charge εe, and the coupling of the dark photon to SM fermions is characterized by $\alpha' = \alpha ε^2$ ### PRD 79, 115008, 2009 - ⇒ New dark sector with a U(1)_D gauge group - ⇒ New gauge boson: dark photon A' with O(GeV) mass $$\epsilon \, F^{mn} \, B_{mn}$$ with a mixing strength ε . - \Rightarrow The dark photon acquires a charge εe, and the coupling of the dark photon to SM fermions is characterized by $\alpha' = \alpha ε^2$. - A dark photon can be readily produced in $$e^+e^- \rightarrow \gamma A', A' \rightarrow f \overline{f}$$ The limits on $e^+e^- \rightarrow Y(2S,3S) \rightarrow \gamma \mu^+\mu^-$ can be reinterpreted as limits on dark photon production. #### J.D. Bjorken et al., PRD 80 (2009) 075018 ### Constraints on $\alpha'/\alpha = \epsilon^2$ # **Dark Higgs boson** - □ Dark boson mass is generated via the Higgs mechanism, adding a dark Higgs boson (h') to the theory. - A minimal scenario has a single dark photon and a single dark Higgs boson. Very well motivated theoretically. - ⇒ The dark Higgs mass could be at the GeV scale. - ⇒ The Higgs'-strahlung process $$e^+e^- \to A^{\prime *} \to h^\prime \ A^\prime$$, $h^\prime \to A^\prime \ A^\prime$ is very interesting, as it is **only suppressed by** ϵ^2 and is expected to have a **very small background**. $\alpha_D = g_D^2 / 4\pi$ g_D is the dark sector gauge coupling B. Batell et al., PRD 79 (2009) 115008 R. Essig et al., PRD 80 (2009) 015003 20 ### Higgs decay topology 21 ### **Fully reconstructed** $$\begin{array}{c} \textbf{e}^+\textbf{e}^- \rightarrow \textbf{h}^\prime \ \textbf{A}^\prime, \ \textbf{h}^\prime \rightarrow \textbf{A}^\prime \ \textbf{A}^\prime \\ \\ \textbf{with} \ \ \textbf{A}^\prime \rightarrow \textbf{e}^+\textbf{e}^-, \ \mu^+\mu^-, \ \ \pi^+\pi^- \end{array}$$ ### Fully reconstructed signal ⇒ Three dark photons fully reconstructed #### **Modes included** $$\Rightarrow$$ e⁺e⁻ \rightarrow (l⁺l⁻) (l⁺l⁻) (l⁺l⁻) l=e, μ $$\Rightarrow$$ e⁺e⁻ \rightarrow (l⁺l⁻) (l⁺l⁻) (π ⁺ π ⁻) $$\Rightarrow$$ e⁺e⁻ \rightarrow (l⁺l⁻) $(\pi^+\pi^-)$ $(\pi^+\pi^-)$ #### Selection - \Rightarrow 6 tracks with an invariant mass m_{tot} > 0.95 \sqrt{s} - ⇒ apply lepton particle identification - ⇒ cosine helicity angle of A' → e⁺e⁻ candidates < 0.9 - ⇒ three dark photon candidates have similar mass ### **Partially reconstructed** $$\begin{array}{c} e^+e^-\to h^\prime~A_1^{\prime}~,~h^\prime\to A_2^{\prime}~A_3^{\prime}\\ \text{with}~~A^\prime_{1,2}\to e^+e^-,~\mu^+\mu^-,~A^\prime_3\to X \end{array}$$ #### Partially reconstructed signal - \Rightarrow In the high mass region (m_A > 1.2 GeV), the decay of the dark photon is dominated by A' \rightarrow qq - ⇒ Reconstruct 2 A' decaying to leptons and 1 A' to qq - \Rightarrow Reconstruct four-momentum $P_3 = P_{ee} P_1 P_2$ #### **Modes included** $$\Rightarrow$$ e⁺e⁻ \rightarrow (I⁺I⁻) (μ ⁺ μ ⁻) + X where X is not I⁺I⁻ / π ⁺ π ⁻ #### Selection - \Rightarrow apply particle identification for A' \rightarrow l⁺l⁻ decays - \Rightarrow cosine helicity angle of A' \rightarrow e⁺e⁻ candidates < 0.9 - ⇔ three dark photon candidates have similar mass - Six events are selected from the full BABAR dataset (517 fb⁻¹) - Three entries for each event, corresponding to the three possible assignments of the h → A'A' decay - **⇒** Estimate background from - wrong-sign combinations, e.g. $e^+e^- \rightarrow (e^+e^+) (e^-e^-) (\mu^+\mu^-)$ - sidebands from final sample - rate for 6 leptons ~ 100x rate for $4\pi+21$ above 1.5 GeV No events with 6 leptons, consistent with the pure background hypothesis Limit on the cross section e⁺e⁻ \rightarrow h' A', h' \rightarrow A' A' in the regime m_H > 2 m_{Δ} - ⇒ Scan the m_h vs m_A plane, Bayesian limit with uniform prior in cross-section Extract limits 1 on the product $\alpha_D \epsilon^2$ ⇒ Limits on couplings down to a few x 10⁻¹⁰ $$\alpha_D = g_D^2 / 4\pi$$ g_D is the dark sector gauge coupling Limit on $\varepsilon^2 = \alpha'/\alpha$ for various Higgs mass (assuming $\alpha_D = \alpha_{em}$) Substantial improvement over existing limits for $m_{h'} < 5 - 7$ GeV if light dark Higgs boson exists # **Summary** - The B-Factories are well-suited to the study of Lepton Number Violation and Lepton Flavor Violation in a wide variety of initial and final states - Large datasets of B, D and tau decays, excellent lepton identification and kinematic handles from fully reconstructed decays and/or hermiticity have helped in setting LFV and LNV limits approaching 10⁻⁸, competitive (at least for the moment) with LHCb, and complementary to dedicated experiments - In the little-to-no backgrounds regime currently seen in many of the searches, the ~50-75 ab⁻¹ luminosities projected for the future Belle-II and Super-B "super" flavor factories will allow additional sensitivity up to two orders of magnitude beyond the current limits