Heavy Flavor Physics Heavy Flavor Physics at the Tevatron Centered on B, physics

University of Tsukuba

on behalf of the CDF and DØ collaborations

XXVI Rencontres de Physique de la Vallée d'Aoste La Thuile, Aosta Valley, Italy February 29, 2012

pp collisions at $\sqrt{s=1.96}$ TeV

Typical initial luminosities of 3.5x10³²cm⁻²s⁻¹

Tevatron

- >50 pb⁻¹ collected per week
- Shutdown after 30 years operation
- Delivered 12fb⁻¹ and recorded ~10fb⁻¹

Jevatron Experiments

CDF II Detector

DØ Detector

- Silicon vertex detector
- Central tracking
- Calorimeter & muon systems (dimuon trigger)

- Particle ID (TOF and dE/dx)
 - Excellent mass resolution

- Single muon trigger
- Excellent electron & muon ID
- Excellent tracking acceptance

H. Miyake

H. Miyake

Grestimation

Dominant BG: combinatorial

Mostly rejected by NN discriminant

Peaking BG: $B \rightarrow hh$

- **Estimated using MC and D*-tagged** $D^0 \rightarrow K^-\pi^+$ data
- Only 10% of combinatorial BG in B_s

Well controlled

Checked by various control samples					
sample	NN cut	pred	CC obsv	prob(%)	• Negative lifetime
OS-	0.700 <nn<0.760 0.760<nn<0.850< td=""><td>$\begin{array}{c} 268.8 \pm (14.3) \\ 320.8 \pm (16.1) \end{array}$</td><td>249 282</td><td>82.3 95.1</td><td>Same/opposite sig</td></nn<0.850<></nn<0.760 	$\begin{array}{c} 268.8 \pm (14.3) \\ 320.8 \pm (16.1) \end{array}$	249 282	82.3 95.1	Same/opposite sig
	0.850 < NN < 0.900 0.900 < NN < 0.940	$ \begin{array}{r} 150.3 \pm (9.9) \\ 146.2 \pm (9.7) \end{array} $	156 158	36.5 23.0	• Reverse muon ID
	0.940 <nn<0.970 0.970<nn<0.987< td=""><td>$146.2 \pm (9.7) \\ 100.4 \pm (7.8)$</td><td>137 98</td><td>72.9 58.3</td><td></td></nn<0.987<></nn<0.970 	$146.2 \pm (9.7) \\ 100.4 \pm (7.8)$	137 98	72.9 58.3	
	0.987 <nn<0.995 0.995<nn<1.000< td=""><td>$78.8 \pm (6.8) \\ 41.2 \pm (4.8)$</td><td>59 42</td><td>97.0 47.2</td><td></td></nn<1.000<></nn<0.995 	$78.8 \pm (6.8) \\ 41.2 \pm (4.8)$	59 42	97.0 47.2	

La Thuile 2012, Italy, 2/29/2012

H. Miyake

Appendix recap of 2011

Interesting >2.5σ excess of B_s over BG observed by CDF in 7fb⁻¹
 Compatible with all other results, but could be first indication of a signal
 CDF updates the analysis with whole Run II dataset (+30% data)
 while keeping the analysis unchanged

H. Miyake

H. Miyake

Summer excess not reinforced by new data, but still there

Keep observing a >2σ fluctuation over BG only, which allows us to quote a BR

BR(B_s \rightarrow µ⁺µ⁻)=(1.3^{+0.9}_{-0.7}) × 10⁻⁸ 0.8 × 10⁻⁹<BR(B_s \rightarrow µ⁺µ⁻) <3.4 × 10⁻⁸ 95% C.L.

Summer'11 BR(B_s→μμ)=1.8^{+1.1}-0.9</sub>x10⁻⁸

s > µµ comparison

Compatible with SM and other experiments

La Thuile 2012, Italy, 2/29/2012

11

CP violation in B_s system

B_s measurement: outline

H. Miyake

vo: signal

H. Miyake

H. Miyake

H. Miyake

La Thuile 2012, Italy, 2/29/2012

16

Predominately CP-even (purely CP-even: D, +D, -) May give dominant contribution to B_s width difference in SM **Possible to infer \Delta \Gamma_s / \Gamma_s by measuring BR(B_z → D_z^{(*)+}D_z^{(*)-})** • under some assumptions: $2\mathcal{B}(B_s^0 \to D_s^{(*)+}D_s^{(*)-}) \sim \frac{\Delta\Gamma_s}{\Gamma_s + \Delta\Gamma_s/2}$ Aleksan et. al., PLB 316, 567 (1993) **BR not precisely measured so far** Dunietz et. al., PRD 63, 114015 (2001) CDF result: PRL 100, 021803 (2008) CDF result: PRL 100, 021803 (2008) BR $(B_s \rightarrow D_s^+ D_s^-) = (0.94^{+0.44}_{-0.42})\%$ PRL 102, 091801 (2009) DØ result: $\mathsf{BR}(B_s \to D_s^{(*)+} D_s^{(*)-}) = (3.5 \pm 1.0 \pm 1.1)\%$ Belle result: DPF2011 preliminary BR $(B_s \to D_s^{(*)+}D_s^{(*)-}) = (4.3 \pm 0.4 \pm 1.0)\%$ need more data to be conclusive

La Thuile 2012, Italy, 2/29/2012

H. Miyake

CDF update from 355pb⁻¹ analysis PRL100,021803 (2008)

: analysis

Use 6.8fb⁻¹ two track trigger data

Event selection:

- Partial reconstruction $(B_s \rightarrow D_s^+ D_s^- X)$ since neutral from D_s^* is hard to reconstruct
- BR normalized by $B^0 \rightarrow D^+ D_s^-$
 - Final state: combination of D_s subdecays
 - ▶ $D_s \rightarrow K^{*0}K$ or $\phi \pi \rightarrow KK\pi$
 - ▶ D→Kππ for normalization channel
 - Use D_s Dalitz structure for accurate acceptance determination and reduce systematic uncertainty
 - Optimized by neural network
 - Simultaneous fit to the four decays as a way to better constrain all the yields
 - cross feeds calibrated

H. Miyake

H. Miyake

- results CDF II Preliminary 6.8 fb⁻¹ **CDF II Preliminary** 6.8 fb⁻¹ Data Data $40 = D_{s}^{+}(\phi \pi^{+}) D_{s}^{-}(\phi \pi^{-})$ $D_{s}^{+}(\phi\pi^{+}) D(K^{+}\pi\pi)$ 800 Fit projection Fit projection per 10 MeV/c² Candidates per 10 MeV/c² Background Background 600 $B^0_s \rightarrow D^+_s D^-_s$ New! $B_s^0 \rightarrow D_s^{*+} D_s^ B_s^0 \rightarrow D_s^{*+} D_s^{*-}$ 200 600 Candidates $D_{s}^{+}(\overline{K}^{*0}K^{+}) D^{-}(K^{+}\pi^{-}\pi^{-})$ $D_{s}^{+}(\overline{K}^{*0}K^{+}) D_{s}^{-}(\phi\pi^{-})$ $B^0 \rightarrow D_s^+ D^ B^0 \rightarrow D^+_{s} D^ B^0 \rightarrow D^+_s D^{*-}_s$ 400 $B^0 \rightarrow D_c^+ D^{+-}$ $B^0 \rightarrow D_s^{*+} D^{-}$ $B^0 \rightarrow D_s^{*+} D^{-}$ $B^0 \rightarrow D_s^{*+} D^{*-}$ 200 $B^0 \rightarrow D_s^{*+} D^{*-}$ 5.0 5.0 Invariant Mass (GeV/c²) Invariant Mass (GeV/c²) $= (0.49 \pm 0.06 \pm 0.05 \pm 0.08) \%,$ $BR(B_{s} \rightarrow D_{s}^{*\pm} D_{s}^{\mp}) = (1.13 \pm 0.12 \pm 0.09 \pm 0.19) \%,$ $BR(B_{s} \rightarrow D_{s}^{*+} D_{s}^{*-}) = (1.75 \pm 0.19 \pm 0.17 \pm 0.29) \%,$ $BR(B_{s} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}) = (3.38 \pm 0.25 \pm 0.30 \pm 0.56) \%$ Simultaneously fit each fraction of the final states from D_sD_(s) mass distribution $\begin{array}{c} \begin{array}{c} -3.05 \pm 0.08 \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & = (1.13 \pm 0.12 \pm 0.09 \pm 0.19) \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & = (1.75 \pm 0.19 \pm 0.17 \pm 0.29) \\ \text{S} \\ \end{array} \\ \begin{array}{c} \text{S} \\ \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \\ \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \begin{array}{c} + & \text{S} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\ \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \end{array} \\ \begin{array}{c} + & \text{S} \end{array} \\

H. Miyake

Conclusion

B_s sector: exciting frontier to pursue BSM Tevatron Run II allowed dramatic breakthrough in the B_s sector

MALLAN PAL

Analysis of full dataset achieved!
 B_s→μμ (10fb⁻¹)
 CPV in B_s mixing (B_s→J/ψφ) (10fb⁻¹)
 B_s→D_s^{*+}D_s^{*-} (6.8fb⁻¹)

Don't relax yet, a few more aces up our sleeve!

Backup

La Thuile 2012, Italy, 2/29/2012

H. Miyake

B production @ Tevatron

> Pros

- Enormous cross-section
- All species of b-hadrons
 - \bullet B_u,B_d,B_s,B_c,Λ_b, Σ_b...

> Cons

- QCD background x10³ larger than $\sigma(b\overline{b})$
 - Collision rate ~2MHz
 - tape writing limit ~100Hz
 - Sophisticated triggers are very important!
- **Difficulty in \pi^0 reconstruction**

- Analogously to the neutral B⁰ system, CP violation in B_s system occurs through interference of decays with and without mixing:

B_s Mass eigenstates: **B**_s^L, **B**_s^H Mass difference $\Delta m_s = m_H - m_L \sim 2|M_{12}|$ Width difference $\Delta \Gamma_s = \Gamma_L - \Gamma_H \sim 2|\Gamma_{12}|\cos\phi_s$

CP violating phases :

 $\phi_s = \arg(-\frac{M_{12}}{\Gamma_{12}})$

 β_s

$$\phi_s^{SM} \sim 0.004$$

 $\beta_s^{SM} = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) \sim 0.02$
A. Lenz and U. Nierste, JHEP 06, 072(2007

iolation in B. System

 $\begin{pmatrix} a \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

 $V_{us}V_{ub}^* \qquad \qquad V_{ts}V_{tb}^* \qquad \qquad \beta_s^{SM}$

 $V_{cs}V_{cb}^*$

 Φ_s^{NP} contributes to both Φ_s and β_s

 $-2\beta_s = -2\beta_s^{SM} + \phi_s^{NP}$ If ϕ_s^{NP} dominates $:-2\beta_s \sim \phi_s^{NP}$

not to scale

- Same sign di-lepton asymmetry very small in SM $\sim O(10^{-4}) \rightarrow$ sensitive NP probe

n dimuon asymmetry

$$A_{\rm sl}^b \equiv \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}} = C_d a_{\rm sl}^d + C_s a_{\rm sl}^s$$

$$a_{\rm sl}^q = \frac{\Gamma(\bar{B}_q^0(t) \to \mu^+ X) - \Gamma(B_q^0(t) \to \mu^- X)}{\Gamma(\bar{B}_q^0(t) \to \mu^+ X) + \Gamma(B_q^0(t) \to \mu^- X)} = \frac{\Delta \Gamma_q}{\Delta M_q} \tan \phi_q \ \phi = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

$$a_{\rm sl}^d({\rm SM}) = (-4.8^{+1.0}_{-1.2}) \times 10^{-4} \qquad C_d = 0.594 \pm 0.022,$$

 $a_{\rm sl}^s({\rm SM}) = (2.1 \pm 0.6) \times 10^{-5}$ HFAG, arXiv 1010.1589 [hep-ex] (2010)

- SM prediction $A^b_{
m sl} = (-0.028^{+0.005}_{-0.006})\%$ Lentz, Nierste, JHEP 0760, 072 (2007)

1

- Initial D0 measurement with 6 fb⁻¹ Abazov,PRD 82, 032001(2010), Abazov, PRL 105, 081801 (2010) $A_{sl}^{b} = -0.00957 \pm 0.00251 (stat) \pm 0.00146 (sys)$

was 3.2σ away from SM expectation

Same sign dimuon asymmetry

- D0 updates the analysis with 9 fb⁻¹ from previous 6 fb⁻¹

- Improved muon selection:
 - 13% increase in statistics due to looser muon longitudinal momentum selection
 - 20% reduction in K and π decay in flight backgrounds
- Muon impact parameter studies support hypothesis that muons are indeed from B decays

- New result is 3.9σ away from the SM expectation:

 $A_{\rm sl}^b = (-0.787 \pm 0.172 \text{ (stat)} \pm 0.093 \text{ (syst)})\%$

- Good agreement between muon impact parameter distributions in data and MC

