

D. Mazin IFAE, Barcelona

#### **CTA: CHERENKOV TELESCOPE ARRAY**

#### for the CTA consortium

Thanks for material from Werner Hofmann and Manel Martinez

#### contents



- Very High Energy Gamma-Ray Astronomy
  - Observation technique
  - Major results
- CTA: concept
- Technical implementation
- Physics ahead
- Status of the project







#### Current status: 3 major observatories





With instruments like H.E.S.S., MAGIC, VERITAS: "Real astronomy"



□ High sensitivity

3 orders of magnitude dynamic range in flux between strongest and

faintest sources

□ Wide spectral range

>2 orders of magnitude coverage in energy, up to 10s of TeV

10-15% energy resolution

Resolved source morphology

~5' angular resolution

10-20" source localization

□ Survey capability

H.E.S.S. Galactic Plane Survey:2% Crab sensitivity

Well-resolved light curves Minute-scale variability of AGN







#### Spectra and Phasograms

Crab Pulsar and Nebula is our standard candle: • Left over after supernova 1054 • 2 kpc away • Pulsar with 33.6 ms period • Relativistic electrons (Γ up to ~10<sup>9</sup>) extending up to a few pc -> Nebula









## Propagation of Gamma-rays



TeV gammas are partially absorbed on the way to the Earth:

 $\gamma_{\text{TeV}} + \gamma_{\text{EBL}} \rightarrow e^+ e^-$ 

This effect can be used to infer EBL density from measured AGN spectra





Some key object classes still elusive, e.g.

- Galaxy clusters as cosmological storehouses of CRs
- Very high energy emission from GRB
- Dark Matter annihilation signatures
  Some key mechanisms remain to be understood, e.g.
- Supernovae as sources of cosmic rays: do they provide sufficient peak energy & energy output?
- Cosmic ray escape from accelerators and propagation
- Energy conversion in pulsars

Energy range & angular resolution of current instruments insufficient to probe details



#### CTA concept

10 fold sensitivity of current instruments 10 fold energy range improved angular resolution two sites (North / South) operated as observatory

> World-wide cooperation 25 countries 132 institutes >800 scientists

The future in VHE gamma ray astronomy:

cherenkov telescope array

Reminder: imaging the cascade geometry → photon direction intensity → photon energy shape → cosmic ray rejection

In reality: a short (nanoseconds) faint (few 10 ph./m<sup>2</sup>) blue flash

Wally Pacholka / AstroPics.com

#### Shower light pool

- large enough to illuminate several telescopes → stereoscopy
- small compared to array size → detection area given by array size (at high energy)



#### The Cherenkov Telescope Array concept

Low energy Few 23 m telescopes 4...5° FoV ~2500 pixels ~ 0.1° Medium energy About twenty 12 m telescopes 6...8° FoV ~1500 pixels ~ 0.18° High energy Fifty + 4...7 m telescopes  $8...10^{\circ}$  FoV ~1500...2000 pixels ~ 0.2^{\circ}...0.3^{\circ}

Only in southern array (for Galactic science)



#### Technical implementation



Selection of different possible sub-arrays with estimated construction cost of ~80 M€ each



## Design: 23 m Large Telescopes

optimized for the range below 200 GeV





# Design: Medium-Sized 12 m Telescope

optimized for the 100 GeV to ~10 TeV range



16 m focal length 7-8° field of view 0.18° pixels



100 m<sup>2</sup> dish area 1.2 m mirror facets



### Dual Mirror Option for medium telescope

Improved imaging Small plate scale

Discussed for US-driven expansion of MST array





#### Sensitivity







# CTA, an open observatory



- Large number of detectable objects main motivation to operate CTA as an open observatory
  - Provide tools for data dissemination and data analysis
- Large number of users from astronomy, astroparticle and particle physics, cosmology, ...





#### Physics ahead

Very subjective highlights



# Cosmic ray accelerators





• Through detecting all bright SNR in the galaxy and resolving many

 Through spectral studies (e.g. finding energy cutoffs)



### AGNs and GRBs (fast variability!!)



Expect a quantitative jump in: Population studies, detecting sources at z>2, enormous progress in modeling of the emission, origin of variability



# Extragalactic Background light and Cosmology



- Simultaneous measurement of absorbed and unabsorbed parts of the energy spectrum
- Measuring EBL through resolved spectral features
- 50 hours of observation 20 hours of observation preliminary 26 24 2.2 preliminary 0.6 0.8 1.2 1.4 1.6 1.8 1 EBL scaling factor 0.8 1.2 1.6 1.4 1.8 EBL density scale factor

 Once EBL is measured, use it to independently measure distance to sources and test cosmological model



#### **Fundamental physics**





## Dark matter





Might well be within the reach!

#### Status and plans



Design study phase concluded in Fall 2010

 Design Concepts for the Cherenkov Telescope Array (arXiv:1008.3703)

FP7-supported Preparatory Phase: Fall 2010 – Fall 2013

- → Technical design, sites, construction and operation cost
- → Legal, governance and finance schemes
- → Small + medium-sized telescope prototypes

#### Aim for

- start of deployment in early 2014
- first data in 2016/17
- base arrays complete in late 2018
- expanded mid-energy array driven by US



#### BACKUP

#### TeV Astronomy: Highlights

Over 350 publications in high-impact journals:

- *Microquasars:* Science 309, 746 (2005), Science 312, 1771 (2006)
- Pulsars: Science 322, 1221 (2008)
- Supernova remnants: Nature 432, 75 (2004)
- The Galactic Centre: Nature 439, 695 (2006)
- Galactic Survey: Science 307, 1839 (2005)
- Starbursts: Nature 462, 770 (2009), Science 326,1080 (2009)
- AGN: Science 314,1424 (2006), Science 325, 444 (2009)
- EBL: Nature 440, 1018 (2006), Science 320, 752 (2008)
- Dark Matter: Phys Rev Letters 96, 221102 (2006)
- Lorentz Invariance: Phys Rev Letters 101, 170402 (2008)
- Cosmic Ray Electrons: Phys Rev Letters (2009)

Results from **HESS**, **MAGIC** and **VERITAS** 



## **Science Potential**





- Current instruments have passed the critical sensitivity threshold and reveal a rich panorama, but this is clearly only the tip of the iceberg
- What big science questions remain ?

#### Tentative timeline towards the CTA observatory









#### **Goals of Prep Phase**



- Provide a technical design
- Provide site choices
- Define organizational, legal, financial framework
- Provide reliable costs for construction and operation
- Develop funding scenario
- Prepare science exploitation
- Get agencies to sign

CTA-PP budget:

- 5.2 M€ from FP7
- + support by local agencies >10 M€

#### Telescope characteristics





Differences to optical and radio telescopes: the scope array what does not matter (much)

Seeing: Pixel size of CT's is 0.1° – 0.2° Don't care about seeing

Water vapor: no significant scattering or absorption of Cherenkov light Don't care as long as it is vapor

Tracking, shaking: no need to point / track very precisely as long as one knows where the telescope points during the 10 ns exposure