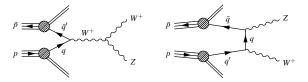
Finding a Z \rightarrow 2jets signal in W+3jets events at CDF

Caterina Vernieri (Scuola Normale Superiore & INFN, Pisa)

On Behalf of the CDF Collaboration

XXVI Rencontres de Physique de la Valle d'Aoste, Feb 26th-Mar 3rd 2012, La Thuile, Italy

The importance of WZ



Measurements of diboson associated production are fundamental tests of the EWK sector of SM $\,$

1. Production cross sections are well known by theory at NLO and they are related to TGC^2

 $\mapsto \!$ The virtual W propagator diagram in WZ production is sensitive to WWZ coupling

2 W^{\pm} , Z coupling (TGC) is sensitive to new physics

3 $WZ \to \ell \nu q \overline{q}$ is a preliminar step towards $WH \to \ell \nu b \overline{b}$

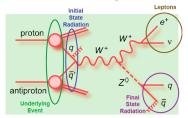
 $\Rightarrow WZ \rightarrow l \nu q \overline{q}$ allows to develop a number of techniques to be used in the Higgs search

Observing $WZ \rightarrow \ell \nu q \bar{q}$ is extremely difficult for two main reasons.

 1^{st} The event rate is extremely low:

- $\sigma(p\bar{p} \to WZ) \cdot B.R.(WZ \to \ell \nu q\bar{q}) \sim 0.7 \text{ pb} \Longrightarrow \sim 4.5 \cdot 10^3 \text{ events for}$ $\mathcal{L} = 6.6 \text{ fb}^{-1}$
- trigger + kinematical selection efficiency $\sim \text{few }\%$

 2^{nd} Signal to Background ratio is very poor.


• A preferred discriminant used at CDF to separate the background from the diboson signal is the invariant mass of the two E_T -leading jets.

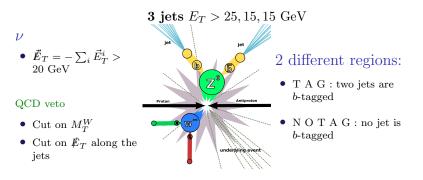
It would be extremely important be able to search for the signal also in events with more than two high energy jets.

Origin of the Extra Jet

So we look at the MC sample of WZ $\rightarrow \ell \nu q \bar{q}$ events with 3 jets where about **33%** of the signal events lie.

- 1. Radiation from interacting partons (ISR)
- 2. Radiation from Z-decay products (FSR)
- 3. Extra-activity produced by spectator partons or by pile-up of events (negligible)

We look for stable hadrons within the jet cone, and ask that the total hadron energy originating from a single parton is >50% than the jet energy.


- Rate of matching is $\sim 99\%$
- For each jet we are able to state if is

FSR : all three hadron showers originate from the Z

ISR : one shower comes from a primary beam parton

Event Selection

Isolated lepton triggering the event:

- Central Electron : $E_T > 20 \text{ GeV}$
- Central muon : $p_T > 20 \text{ GeV}$

State of the art

- The extra jet due to initial (ISR) or final state radiation (FSR) confuses the choice of the jet system to be attributed to Z decay.
- Which jet combination should be used to build the mass?
 - \rightarrow a wrong choice spoils the resolution

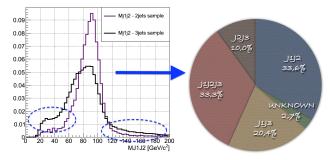
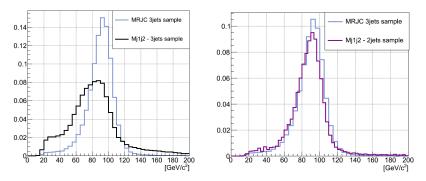
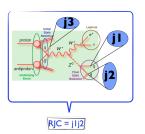



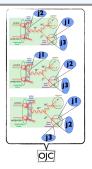
Figure: MJ1J2 is dijet mass built with the two leading jets. MJ1J2 mass in the tight dijet sample (no additional jets with $E_T > 15$ GeV and $|\eta| < 3.6$).

The best we can do with three jets

Figure: MJJ_{RJC} for the three jets sample. Left: MJ1J2 is dijet mass built with the two leading jets. Right: MJ1J2 mass in the tight dijet sample (no additional jets with $E_T > 15$ GeV and $|\eta| < 3.6$).

- Jets are ordered in decreasing "b-likeness" (Tag) or E_T (NoTag)
 - $\circ~$ Jets are matched in direction to hadrons
 - $\circ~$ Investigate at generator level the origin of the not-matched jet (\mathbf{NMJ}) in order to find the Right Jet Combination (\mathbf{RJC})
 - 1. NMJ = J3 is from ISR $\mapsto RJC = J1J2$ 2. NMJ = J2 is from ISR $\mapsto RJC = J1J3$ 3. NMJ = J1 is from ISR $\mapsto RJC = J2J3$ 4. NMJ = J1 or J2 or J3 is from FSR $\mapsto RJC = J1J2J3$
- We decide to use 4 different NNs for selecting the 4 different combinations
- We build a "MJJ_{COMB}" Z-mass, combining by a set of subsequent optimal cuts¹ the information provided by the outputs of the four NNs.

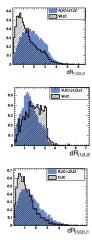

¹Cuts have been optimized against the sensitivity of the measurement.



How do we select events with RJC=J1J2?

We train NN_{12} on WZ sample in order to separate:

- 1. **RIGHT** : events in which J1 and J2 are 'Z-jets'
- 2. WRONG : events in which J1 or J2 is not a 'Z-jet'



We want to select in data as many **RIGHT** events as possible.

Our Technique

A list of the variables used as input for the NNs. 1 Kinematical Variables

- $\mathrm{d}\eta_{j_i j_k}, \, \mathrm{dR}_{j_i j_k}, \, dR_{j_i \ell}$
- $dR_{j_k j_l, j_p}, dR_{j_1 j_2 j_3, j_k}$

where i, k, p = 1, 2, 3; ℓ = highest E_T lepton

- 2 Variables related with the jet systems
- $m_{j_i j_k}/m_{j_1 j_2 j_3}$
- $\gamma_{j_i j_k} = (E_{j_i} + E_{j_k})/m_{j_i j_k}$
- $\gamma_{jjj} = (E_{j_1} + E_{j_2} + E_{j_3})/m_{j_1j_2j_3}$
- 'pt-imbalance': $P_{TJ1} + P_{TJ2} P_{T\ell} MET$
- $\eta(j_i + j_k)/\eta(j_p), \, p_T(j_i + j_k)/p_T(j_p)$

3 CDF tools for discriminating b and gluon jets from light jets

Results - MC Signal

Using MJJ_{COMB} rather than MJ1J2, resolution improves by a factor ~ 2 .

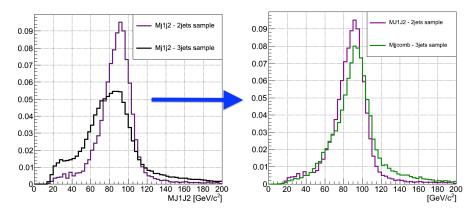
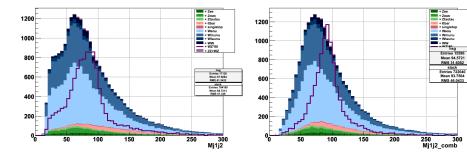



Figure: MJ1J2 is the invariant mass in the tight dijet sample SX: MJ1J2 is the invariant mass in the three jets sample built using the E_T -leading jets. $DX: MJJ_{COMB}$.

Results - MC

We apply the method also to the major sources of background of a typical diboson analysis at CDF (W+jets, Z+ jets, $t\bar{t}$ and single top) and compare the result to WZ events.

• MJJ $_{COMB}$ has a resolution comparable with the one of MJ1J2 in the 2-jets sample

• MJJ_{COMB} allows a better separation of the WZ/ZZ signal from background

Studied two samples to test the method: MJ1J2 VS MJJ_{COMB}

- We analysed a simulated pretag sample of WW/WZ/ZZ events.
- We estimate the probability at three standard deviations level to extract an inclusive diboson signal $(P3\sigma)$.
- P3 σ is ~ 4 times greater when fitting MJJ_{COMB} rather than the standard MJ1J2.

Fit Method	$\mathbf{P2}\sigma$	$\mathbf{P3}\sigma$
WZ/ZZ/WW pretag		
- MJ1J2	51.2%	6.4%
- MJJ _{COMB}	74.9%	26.5%

• In order to discriminate against the WW contribution we apply our technique considering only WZ/ZZ as the signal.

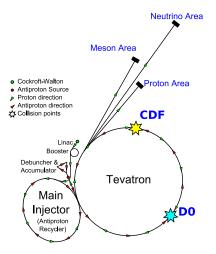
 \mapsto Information of the *notag* and *tag* channels is exploited.

• The expected *p*-value is about 22% greater when MJJ_{COMB} is used rather than the standard MJ1J2.

Fit Method	p-value
WZ/ZZ notag+tag	
- MJ1J2	$0.44~\sigma$
- MJJ _{COMB}	0.54 σ

Conclusions

- We show a procedure to reconstruct Z in diboson production with large E_T , lepton and 3 jets final state.
- When WZ/ZZ/WW are considered as signal, the 3σ evidence (P 3σ) increases by a factor 4
- Fitting on MJJ_{COMB} rather than MJ1J2 enhances the sensitivity of extracting the WZ/ZZ signal.
- Adding the 3-jets to 2-jets sample in the WZ/ZZ analyses increases the expected p-value by about 10%

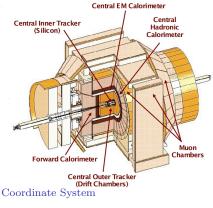

BACKUP

	MJ1J2	MJJ_{COMB}
$\begin{array}{c} Acc \\ p \\ \sigma/\mu \end{array}$	$100\% \\ 33\% \\ 0.27$	$90\% \\ 67\% \\ 0.13$

Table: Acc is the acceptance; p is the purity and it is defined as the fraction of events where the corrected jets are selected; σ and μ are estimated by a Gaussian fit in the mass window [70,110] GeV/ c^2

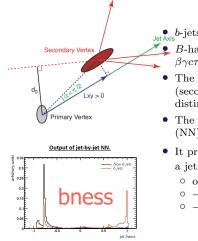
Tevatron Collider (Run II)

- $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV
- Run II collected data from 2001 until 30/09/2011
- Delivered luminosity $\sim 12 \text{ fb}^{-1}$
- Instantaneous luminosity record~ $4.3 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- 2 experiments: CDF, DØ



CDF II

Main Components


- Tracking system with B~1.4 T
- Electromagnetic and hadronic calorimeters segmented in projective towers that point to the interaction region
- Muon chambers

- $r, \phi, \eta \equiv -\ln(\tan\theta/2)$
- $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- $E_T = E \cdot \sin \theta$

b-jets at CDF: bness

- $\underset{\mathsf{Jet}\,\mathsf{Axis}}{\bullet} b\text{-jets}$ are produced by b-quarks hadronization
 - $\begin{array}{l} \textbf{B-hadrons have long proper lifetime} \rightarrow \\ \beta \gamma c \tau \sim \mathrm{mm} \end{array}$
 - The vertex where the decay products originate (secondary) may be enough displaced to be distinguishable from the primary one.
 - The bness is a multivariate, neural network (NN) based tagger
 - It provides an output which indicates how *b*-like a jet appears to be
 - output range is [-1, 1]
 - $\circ \ \rightarrow +1$: b-like
 - $\circ \ \rightarrow \text{-1:} \ q\text{-jet}$