Total, elastic and inelastic cross section at 7 TeV

N.Turini

On behalf of the TOTEM collaboration.

The Totem Detectors

- T1 and T2 detectors are installed and fully operational
- $\mathbf{2 2 0} \mathbf{~ m}$ Roman Pot Silicon detectors are fully operational
- $\quad \mathbf{1 4 7} \mathbf{m}$ Roman Pot detectors are installed and tested

P-P Elastic Cross Section measurement

Kinematics correlations and background subtraction

La Thuile 28-2-2012

Acceptance corrections

Both diagonals

Correction of $\theta_{y}{ }^{*}$ dist. for missing 'corners' of acceptance

Diagonal 1

Correction for missing φ accept.:
Correction $=2 \pi /$ accepted $\varphi(\mathrm{t})$
Near edge region to be removed

Luminosity

The data where taken in a special run oct 302010. The 220 m pots where inserted at 7σ from the beam. $\beta^{*}=3.5 \mathrm{~m}$

Time	Events	Eff. DAQ	Eff. trigger	Luminosity
Oct 302010	$5.48^{*} 10^{6}$	0.99	0.995	$6.187 \mathrm{nb}^{-1}$

Elastic scattering - from ISR to Tevatron

Diffractive minimum: analogous to Fraunhofer diffraction: $\quad|t| \sim p^{2} \theta^{2}$

Proton Proton Elastic Cross Section

Global elastic differential cross section

P-P Cross Section and Models Comparison

署

P-P Cross Section and Models Comparison

Low t elastic cross section measurement

$$
\begin{aligned}
& \beta^{*}=90 \mathrm{~m} \\
& L_{\mathrm{y}} \sim 260 \mathrm{~m} \\
& L_{\mathrm{x}} \sim 0-3 \mathrm{~m}
\end{aligned}
$$

Integrated luminosity : $1.65 \mu_{\text {barn }}{ }^{-1}$ Inel. pile-up ~ $0.005 \mathrm{ev} / \mathrm{bx}$

Protons $x-y$ Raw distribution

Θ_{x} and Θ_{y} correlations of both arms

θ_{y}^{*} resolution (very large Ly) in agreement with beam divergence
θ_{x}^{*} 'resolution' includes also the detector and the vertex spread in plot above, but vertex effect vanishes when computing θ with elastic constraint

Elastic differential cross section

Exponential slope:

$$
\left.B\right|_{t=0}=20.1 \mathrm{GeV}^{-2}
$$

Extrapolation to $\mathbf{t}=\mathbf{0}$:
$\left.\frac{d \sigma}{d t}\right|_{t=0}=5.037 \times 10^{2} \mathrm{mb} / \mathrm{GeV}^{2}$

Integral Elastic Cross-Section

$$
\sigma_{\mathrm{EL}}=8.3 \mathrm{mb}^{(\text {extrapol. })}+16.5 \mathrm{mb}^{(\text {measured })}=24.8 \mathrm{mb}
$$

Cross-Section Formulae

Optical Theorem: $\quad \sigma_{T O T}^{2}=\left.\frac{16 \pi(\mathrm{~h} c)^{2}}{1+\rho^{2}} \cdot \frac{d \sigma_{E L}}{d t}\right|_{t=0}$

Using luminosity from CMS: $\frac{d \sigma_{E L}}{d t}=\frac{1}{L} \cdot \frac{d N_{E L}}{d t}$
ρ from COMPETE fit: $\quad \rho=0.14_{-0.08}^{+0.01}$

$$
\begin{aligned}
& \sigma_{T O T}=\sqrt{\left.19.20 \mathrm{mb} \mathrm{GeV}^{2} \cdot \frac{d \sigma_{E L}}{d t}\right|_{t=0}} \\
& \sigma_{T O T}=\sigma_{E L}+\sigma_{I N E L}
\end{aligned}
$$

TOTEM: pp Total Cross-Section

Elastic exponential slope:

$$
\left.B\right|_{t=0}=\left(20.1 \pm 0.2^{(s \text { sat })} \pm 0.3^{(s s s t)}\right) \mathrm{GeV}^{-2}
$$

Elastic diff. cross-section at optical point: $\left.\quad \frac{d \sigma_{e l}}{d t}\right|_{t=0}=\left(503.7 \pm 1.5^{(s \text { stat })} \pm 26.7^{(s s s t)}\right) \mathrm{mb} / \mathrm{GeV}^{2}$
Optical Theorem, $\rho=0.14_{-0.08}^{+0.01}$

Total Cross-Section

$$
\sigma_{T}=\left(98.3 \pm 0.2^{(\text {stat })} \pm 2.7^{(\text {syst })}\left[\begin{array}{l}
+0.8 \\
-0.2
\end{array}\right]^{(\text {syst from } \rho)}\right) \mathrm{mb}
$$

TOTEM: pp Inelastic Cross-Section

$$
\sigma_{\mathrm{el}}=\left(24.8 \pm 0.2^{(\text {stat) }} \pm 1.2^{(\text {syst) })}\right) \mathrm{mb} \quad \sigma_{T}=\left(98.3 \pm 0.2^{(\text {stat) }} \pm 2.7^{(\text {syst })}\left[\begin{array}{c}
+0.8 \\
-0.2
\end{array}\right]^{(\text {syst from } \rho)}\right) \mathrm{mb}
$$

Inelastic Cross-Section

$$
\sigma_{\text {inel }}=\sigma_{t o t}-\sigma_{e l}=\left(73.5 \pm 0.6^{(\mathrm{stat})}\left[\begin{array}{c}
+1.8 \\
-1.3
\end{array}\right](\mathrm{syst}) \mathrm{mb}\right.
$$

$$
\begin{aligned}
& \sigma_{\text {inel }}(C M S)=\left(68.0 \pm 2.0^{(\text {syst })} \pm 2.4^{(\text {lumi) }} \pm 4.0 \text { (extrap) }\right) \mathrm{mb} \\
& \sigma_{\text {inel }}(\text { ATLAS })=\left(69.4 \pm 2.4^{\text {(exp) }} \pm 6.9^{(\text {(extrap) })}\right) \mathrm{mb} \\
& \sigma_{\text {inel }}(\text { ALICE })=\left(72.7 \pm 1.1^{(\text {mod })} \pm 5.1^{(\text {(umi) })} \mathrm{mb}\right.
\end{aligned}
$$

A new direct analysis, based on the inelastic telescopes data, is almost completed and leads to a measurement of the inelastic cross-section which is highly consistent with the one presented here

Total, Elastic, Inelastic Cross-Section

Charged particle $\mathrm{dN} / \mathrm{d} \eta$ measurement in the pseudorapidity range $5.3<\eta<6.4$

- In 2011 the T2 detector has been used to evaluate the charged tracks density.
- The runs used for this purpose where low luminosity runs to avoid the pileup.
- The detector sit after a large amount of material from the vacuum chamber and most of the analysis work has been devoted on the evaluation of the fraction of primary tracks.

Vacuum chamber shadow, and secondary particles production

BeamPipe cone at $\eta \sim 5.54$ (>100 radiation length)

The beam pipe shadows the particle flux in a specific angle corresponding to $\eta \sim 5.54$

Charged particle $\mathrm{dN} / \mathrm{d} \eta$

Track density compared with central measurements

Conclusions

- The TOTEM experiment has performed the total and elastic P-P cross section at 7 TeV measurement using the Roman Pots placed at 220 m from IP5.
- The measurement is done using the CMS estimation of Luminosity
- The inelastic cross section is currently under evaluation directly using the inelastic detector T1 and T2 and is in agreement with the value estimated by subtraction
- The direct measurement of the total cross section using the luminosity independent method is almost finalized.
- The inelastic detector allowed us to estimate the charged track density at large pseudorapidity values.

Backup

Systematics and Statistics

- $t: \pm[0.6: 1.8] \%^{\text {syst optics }} \pm<1 \%$ align. $\pm[3.4: 11.9] \%^{\text {stat }}$ (before unfolding)
- $\mathrm{d} \sigma / \mathrm{dt}: \pm 4 \%$ syst lumin $; \pm 1 \%$ syst (acc.+eff. $\mathrm{tbackg} .+\mathrm{tag}$) $\pm 0.7 \%$ syst unfold.
- $\mathrm{B}: \pm 1 \%$ stat $\pm 1 \%$ syst from $\mathrm{t} \pm 0.7 \%$ syst from unfolding
- $\mathrm{d} \sigma / \mathrm{dt}_{(\mathrm{t}=0)}: \pm 0.3 \%^{\text {stat }} \pm 0.3 \%^{\text {syst (optics) }} \pm 4 \%^{\text {syst lumin }} \pm 1 \%$ syst (acc.+eff.+backg.+tag)
- $\int \mathrm{d} \sigma / \mathrm{dt}: \pm 4 \%$ syst lumin $\pm 1 \%$ syst (acc. +eff. +backg. +tag) $\pm 0.8 \%$ stat extrap.
- $\sigma_{\text {TOT }}:(+0.8 \%-0.2 \%)^{\text {syst } \rho} \pm 0.2 \%^{\text {stat }} \pm 2.7 \%^{\text {syst }}=(+2.8 \%-2.7 \%)^{\text {syst }} \pm 0.2 \%{ }^{\text {stat }}$
- $\sigma_{E L}: \pm 5 \%{ }^{\text {syst }} \pm 0.8 \%$ stat
- $\sigma_{\text {INEL }}:(+2.4 \%-1.8 \%)^{\text {syst }} \pm 0.8 \%$ stat

Secondary tracks evaluation

