Solar Neutino Physics with Borexino

Rencontres de Physique de La Vallée d'Aoste - 2012

Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare Via Celoria 16 – 20133 Milano (Italy) <u>marco.giammarchi@mi.infn.it</u> http://pcgiammarchi.mi.infn.it/giammarchi/

1. BOREXINO

- 2. Be-7 flux measurement
- 3. B-8 measurement
- 4. Geoneutrinos
- 5. Pep first detection
- 6. Future

1. BOREXINO

Borexino is a low background Neutrino Detector for sub-MeV solar Neutrino (and other) studies

Detecting Solar Neutrinos means:

1. BOREXINO

- 2. Be-7 flux measurement
- 3. B-8 measurement
- 4. Geoneutrinos
- 5. Pep first detection
- 6. Future
- Low interaction rates: 0.1/1 event/day/ton of target mass
- Low energy (mostly <10 MeV, better if <2 MeV)
- Low threshold and low background
- Underground location to shield from cosmic rays

Pataīnietainėo-0217//Filealon 02:01221 Febbraio 2012

Energy production in the sun

PP-chain >99% energy production 5 vspecies CNO-cycle <1% energy production 3 vspecies

Solar Neutrino Spectrum

Study of Solar Neutrinos \rightarrow Solar Neutrino Problem \rightarrow Neutrino Oscillations

- Radiochemical experiments discovered Solar Neutrinos (1960s). The Sun is powered by nuclear fusion!
- Kamiokande measured solar Ve ⁸B neutrinos (1980s).
- But detected V_e flux ~1/3 of expected:"The Solar Neutrino Problem"
- SNO measured (2000) the total V_e and V_x flux from ⁸B neutrinos demonstrating neutrino oscillations.

⁷Be neutrinos

- Large flux: 100 times larger than ⁸B.
- Flux predicted with 7% uncertainty.
- Mono-energetic E = 862 keV.

 $\Phi = (4.84 \pm 0.24) \times 10^9 \ cm^{-2} s^{-1}$

Day/Night

3. B-8 measurement

- Analysis with 3 MeV threshold Borexino rate : \approx 0.2 cpd / (100 tons) Backgrounds:
- Muons, Neutrons
- External background
- Fast cosmogenics
- C-10, Be-11
- TI-208,Bi-214

1. BOREXINO

- 2. Be-7 flux measurement
- 3. B-8 measurement
- 4. Geoneutrinos
- 5. Pep first detection

$R = 0.22 \pm 0.04(stat) \pm 0.01(syst) cpd/100t$

⁸B neutrinos

Lowering energy threshold to see increase in P_{ee} at lower energies.

2010: SNO (3.5 MeV, Phase I and II), Borexino (3 MeV) 2011: KamLAND (5.5 MeV), SNO (Phase III), SKIII (5 MeV)

All current observations consistent with expectations:

pep and CNO neutrinos

- Tests of MSW-LMA with ⁷Be limited due to uncertainty in solar flux.
- pep flux predicted with higher precision, 1.2% uncertainty. Allows for more stringent tests of oscillation models. Also mono-energetic.
- CNO fluxes directly related to Solar Metallicity. Allows to discern between High Z and Low Z models.
- Fluxes 10 times smaller than ⁷Be. End points 1-2 MeV. ¹¹C is the dominant background in Borexino.

Going for pep and CNO: ¹¹C tagging

 $\mu + {}^{12}C \rightarrow \mu + {}^{11}C + n$

τ (n capture): ~250 μ s

$$n+p \rightarrow d+\gamma_{2.2\,MeV}$$

$${}^{11}C \rightarrow {}^{11}B + e^+ + \nu$$

τ (¹¹C): ~30min

The main background for pep and CNO analysis is ¹¹C, a long lived (τ =30min) cosmogenic β ⁺ emitter with ~1MeV endpoint

(shifted to 1-2MeV range)

¹¹C Production Channels: [Galbiati et al., Phys. Rev. C71, 055805, 2005]

- 1. 95.5% with n: (X,X+n)
 - **X** = γ , n, p, π^{\pm} , e^{\pm} , μ .
- 2. 4.5% *invisible* :
 - (p,d); (π^+,π^0+p) .

¹¹C rate = (28.5 ± 0.5) cpd exp. pep rate ~ 3cpd Electron/Positron discrimination due to Ps formation in positron events (D. Franco, G. Consolati and D. Trezzi, Phys. Rev. C 83 (2011) 015504

FIG. 2 (color). Experimental distribution of the pulse-shape parameter (black data points). The best-fit distribution (dashed black line) and the corresponding e^- (solid red line) and e^+ (solid blue line) contributions are also shown.

6. Future (summary)

Solar Neutrinos:

- Early motivation \rightarrow study of the Sun
- Unexpected finding \rightarrow neutrino oscillations

1. BOREXINO

- 2. Be-7 flux measurement
- 3. B-8 measurement
- 4. Geoneutrinos
- 5. Pep first detection
- 6. Future

Solar Neutrinos today:

Study of the P(ee) oscillation pattern as a function of energy

Study of the interior of the Sun

Neutrino Oscillations

PMNS neutrino mixing matrix, analogous to CKM matrix for quarks

$$\begin{split} & \sin^2(2\theta_{12}) = 0.861^{+0.026}_{-0.022} \\ & \Delta m^2_{21} = (7.59 + -0.21) \times 10^{-5} \text{ eV}^2 \\ & \sin^2(2\theta_{23}) > 0.92 \ ^{[i]} \\ & \Delta m^2_{32} = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2 \\ & 0.03(0.04) < \sin^2 2\theta_{13} < 0.28(0.34) \end{split}$$
 Solution of the Solar Neutrino Problem is neutrino oscillation with matter (MSW) effect at Large Mixing Angle (LMA)
$$P_{ee} = 1 - \sin^2 2\theta \sin^2(\Delta m^2 L/4E_w)$$

3

 $\sum {U}_{li} ig| {oldsymbol{
u}}_i ig
angle$

 $|v_l\rangle =$

Solar electron neutrino survival probability as a function of neutrino energy LMA-MSW with standard neutrino interactions

Futures perspectives

Detector still fully operational after almost five years of running

Purification capability to be improved

Deal with residual backgrounds

- Measurement of the CNO solar component
- Measurement of short baseline neutrino oscillations with a radioactive source
- Neutrino magnetic moment
- Supernova alert system (SNEWS)
- Measurement of neutrino speed (CNGS beam)

