27 february 2012
Rencontres de La Thuile

Dark IVMsn searches: a theoretion oenspective

Marco Cirelli (CERN-TH \& CNRS IPhT Saclay)

27 february 2012
Rencontres de La Thuile

Dark IVMsn searches: a theoretion oenspective

Marco Cirelli (CERN-TH \& CNRS IPhT Saclay)

A matter of perspective:

A matter of perspective:

A matter of perspective:

SuSy DM

Non SuSy DIM

$?$

A matter of perspective:

SuSy

 neutralinoA matter of perspective:

SuSy

 neutralino

A matter of perspective:

Interactions:

em

weak

strong-ish
other
none
(other than gravity)

A matter of perspective:

Interactions:

em

weak

strong-ish
other
none
(other than gravity)

A matter of perspective:

Interactions:

em

neutralino etc

Little Higgs DM
KK DM
Inert Doublet
Minimal DM
strong-ish $\left.<_{\text {mirror DM }}^{\mathrm{TC} \mathrm{DM}}\right\} a \mathrm{DM}$
other $<\begin{aligned} & \text { 'secluded DM' } \\ & \text { 'WIMPless DM' }\end{aligned}$
$\underset{\text { none }}{\text { nother than gravity) }} \underset{\text { sterile neutrino }}{\text { singlet scalar }} \begin{aligned} & \text { gravitino } \\ & \text { axion }\end{aligned}$

A matter of perspective:

Interactions:

naturalness-inspired

em

neutralino etc
Little Higgs DM KK DM
weak
neutralino etc
Little Higgs DM
KK DM

T Inert Doublet
Minimal DM
strong-ish $-\underset{\text { mirror DM }}{T C D M}$
other $<\begin{aligned} & \text { 'secluded DM' } \\ & \text { 'WTMPless DM' }\end{aligned}$
none
(other than gravity)
sterile neutrino
$\begin{aligned} & \text { gravitino } \\ & \text { axion }\end{aligned}$

A matter of perspective:

Interactions:

naturalness-inspired

em
neutralino etc
Little Higgs DM
KK DM

Inert Doublet
Minimal DM

aDM 'exhaustion'
sort of freeze out sort of freeze out
thermal freeze out
mixing
thermal or decay
misalignment?

Production

 mechanism?
Stability?

thermal freeze out thermal freeze out thermal freeze out thermal freeze out thermal freeze out
Z_{2} symmetry
some symmetry some symmetry
Z_{2} symmetry just long lived R parity or just long lived just long lived

A matter of perspective:

Interactions:

naturalness-inspired

mechanism?

Production

Stability?

thermal freeze out thermal freeze out thermal freeze out thermal freeze out thermal freeze out

neutralino etc

Little Higgs DM KK DM
Inert Doublet
em

sort of freeze out sort of freeze out
thermal freeze out mixing
thermal or decay
misalignment?

R parity T parity K parity
$Z_{\text {Z }}$ symmetry
gauge sym
Tbaryon \#
Z_{2} symmetry
some symmetry some symmetry
Z_{2} symmetry just long lived R parity or just long lived just long lived

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\alpha_{w}^{2}}{M^{2}} \approx \frac{\alpha_{w}^{2}}{1 \mathrm{TeV}^{2}} \Rightarrow \Omega_{X} \sim \mathcal{O}($ few 0.1$)$
(WIMP)

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\alpha_{w}^{2}}{M^{2}} \approx \frac{\alpha_{w}^{2}}{1 \operatorname{TeV}^{2}} \Rightarrow \Omega_{X} \sim \mathcal{O}($ few 0.1$)$
(WIMP)

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\alpha_{w}^{2}}{M^{2}} \approx \frac{\alpha_{w}^{2}}{1 \mathrm{TeV}^{2}} \Rightarrow \Omega_{X} \sim \mathcal{O}($ few 0.1$)$
(WIMP)

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\alpha_{w}^{2}}{M^{2}} \approx \frac{\alpha_{w}^{2}}{1 \mathrm{TeV}^{2}} \Rightarrow \Omega_{X} \sim \mathcal{O}($ few 0.1$)$
(WIMP)

Mintimal Dark Matter

Look for a

weakly

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). As a byproduct, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Little Higgs' heavy photon, Extra dimensional LKP...

...BUT:

Look for a

weakly

Theories beyond the SM have ambitious goals (hierarchy prob, BWSB, unification). As a byproduct, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Little Higgs' heavy photon, Extra dimensional LKP...

...BUT: (i) these theories already start to be uncomfortably fine tuned ("little hierarchy problem", ft in LH etc)

Look for a

weakly

Theories beyond the SM have ambitious goals (hierarchy prob, WWSB, unification). As a byproduct, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Little Higggs' heavy photon, Extra dimensional LKP...

...BUT: (i) these theories already start to be uncomfortably fine tuned ("little hierarchy problem", ft in LH etc)
(ii) these theories have many parameters, DM phenomenology is unclear (scatter plots)

Look for a

weakly

Theories beyond the SM have ambitious goals (hierarchy prob, WWSB, unification). As a byproduct, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Little Higg's' heavy photon, Extra dimensional LKP...

...BUT: (i) these theories already start to be uncomfortably fine tuned ("little hierarchy problem", ft in LH etc)
(ii) these theories have many parameters, DM phenomenology is unclear (scatter plots)
(iii) DM stability is imposed by hand (R-parity, T-parity, KK parity)

Minimalistic approach

On top of the SM, add only one extra multiplet $\mathcal{X}=\left(\begin{array}{c}x_{1} \\ \mathcal{X}_{2} \\ \vdots\end{array}\right)$

$$
\begin{array}{ll}
\mathscr{L}=\mathscr{L}_{\text {SM }}+\overline{\mathcal{X}}(i \nsubseteq+M) \mathcal{X} & \text { if } \mathcal{X} \text { is a fermior } \\
\mathscr{L}=\mathscr{L}_{\text {SM }}+\left|D_{\mu} \mathcal{X}\right|^{2}-M^{2}|\mathcal{X}|^{2} & \text { if } \mathcal{X} \text { is a scalar }
\end{array}
$$

On top of the SM, add only one extra multiplet $\mathcal{X}=\left(\begin{array}{c}\mathcal{X}_{1} \\ \mathcal{X}_{2} \\ \vdots\end{array}\right)$

$$
\begin{aligned}
& \mathscr{L}=\mathscr{L}_{\mathrm{SM}}+\overline{\mathcal{X}}(i \not D+M) \mathcal{X} \quad \text { if } \mathcal{X} \text { is a fermion } \\
& \mathscr{L}=\mathscr{L}_{\mathrm{SM}}+|D / \mathcal{X}|^{2}-\left.\left|M^{2}\right| \mathcal{X}\right|^{2} \quad \text { if } \mathcal{X} \text { is a scalar } \\
& \text { gauge interactions } \quad \text { the only parameter, } \\
& \mathcal{X} \cup{ }_{\mathcal{X}}=\left[g_{2}, g_{1}, Y\right]
\end{aligned}
$$

and systematically search for the ideal DM candidate...

The ideal DM candidate is

$S U(2)_{L}$	$U(1)_{Y}$	spin
2		
$\underline{3}$		
4		
5		
7		

$$
\mathcal{X}=\left(\begin{array}{c}
\mathcal{X}_{1} \\
\mathcal{X}_{2} \\
\vdots \\
\mathcal{X}_{n}
\end{array}\right)
$$

these are all possible choices:

$$
\begin{aligned}
& n \leq 5 \text { for fermions } \\
& n \leq 7 \text { for scalars }
\end{aligned}
$$

to avoid explosion in the running coupling

$$
\alpha_{2}^{-1}\left(E^{\prime}\right)=\alpha_{2}^{-1}(M)-\frac{b_{2}(n)}{2 \pi} \ln \frac{E^{\prime}}{M}
$$

The ideal DM candidate is

$S U(2)_{L}$	$U(1)_{Y}$	spin
$\underline{2}$	1/2	
	0	
	1	
	1/2	
	3/2	
	0	
5	1	
	2	
7	0	

Wach multiplet contains a neutral component with a proper assignment of the hypercharge, according to
$Q=T_{3}+Y \equiv 0$
e.g. for $n=2: T_{3}=\binom{+\frac{1}{2}}{-\frac{1}{2}} \Rightarrow|Y|=\frac{1}{2}$
e.g. for $n=3: T_{3}=\left(\begin{array}{c}+1 \\ 0 \\ -1\end{array}\right) \Rightarrow|Y|=0$ or 1
etc.

The ideal DM candidate is

$S U(2){ }_{L}$	$U(1)_{Y}$	spin
$\underline{2}$	$1 / 2$	S
		F
$\underline{3}$	0	S
		F
	1	S
		F
4	1/2	S
		F
	3/2	S
		F
$\underline{5}$	0	S
		F
	1	S
		F
	2	S
		F
$\underline{1}$	0	S

Wach multiplet contains a neutral component with a proper assignment of the hypercharge, according to
$Q=T_{3}+Y \equiv 0$
e.g. for $n=2: T_{3}=\binom{+\frac{1}{2}}{-\frac{1}{2}} \Rightarrow|Y|=\frac{1}{2}$
e.g. for $n=3: T_{3}=\left(\begin{array}{c}+1 \\ 0 \\ -1\end{array}\right) \Rightarrow|Y|=0$ or 1
etc.

The ideal DM candidate is

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$
$\underline{\underline{2}}$	1/2	S	0.43
		F	1.2
$\underline{3}$	0	S	2.0
		F	2.6
	1	S	1.4
		F	1.8
$\underline{4}$	1/2	S	2.4
		F	2.5
	$3 / 2$	S	2.4
		F	2.5
5	0	S	5.0
		F	4.5
	1	S	3.5
		F	3.2
	2	S	3.5
		F	3.2
7	0	S	8.5

The mass M is determined by the relic abundance:

$$
\Omega_{\mathrm{DM}}=\frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle} \cong 0.24
$$

for \mathcal{X} scalar

$$
\left\langle\sigma_{A} \nu\right\rangle \simeq \frac{g_{2}^{4}\left(3-4 n^{2}+n^{4}\right)+16 Y^{4} g_{Y}^{4}+8 g_{2}^{2} g_{Y}^{2} Y^{2}\left(n^{2}-1\right)}{64 \pi M^{2} g \mathcal{X}}
$$

for \mathcal{X} fermion
$\left\langle\sigma_{A} \nu \simeq \frac{g_{2}^{4}\left(2 n^{4}+17 n^{2}-19\right)+4 Y^{2} g_{Y}^{4}\left(41+8 Y^{2}\right)+16 g_{2}^{2} g_{Y}^{2} Y^{2}\left(n^{2}-1\right)}{128 \pi M^{2} g \chi}\right.$

(- include co-annihilations)
(- computed for $M \gg M_{Z, W}$)

The ideal DM candidate is

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$
$\underline{\underline{2}}$	1/2	S	
		F	1.0
$\underline{3}$	0	S	2.5
		F	2.7
	1	S	
		F	
$\underline{4}$	1/2	S	
		F	
	$3 / 2$	S	
		F	
$\underline{5}$	0	S	9.4
		F	10
	1	S	
		F	
	2	S	
		F	
7	0	S	25

Non-perturbative corrections (and other smaller corrections) (more later) induce modifications:
$\left\langle\sigma_{\text {ann }} v\right\rangle \rightsquigarrow R \cdot\left\langle\sigma_{\text {ann }} v\right\rangle+\left\langle\sigma_{\text {ann }} v\right\rangle_{p-\text { wave }}$ with $\quad R \sim \mathcal{O}$ (few) $\rightarrow \mathcal{O}\left(10^{2}\right)$

The ideal DM candidate is

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	EW loops induce
2	1/2	S		348	a mass splitting ΔM inside the n-uplet:
		F	1.0	342	
$\underline{3}$	0	S	2.5	166	
		F	2.7	166	NM
	1	S		540	
		F		526	
4	1/2	S		353	
		F		347	$\begin{aligned} & M_{Q}-M_{Q^{\prime}}=\frac{\alpha_{2} M}{4}\left\{\left(Q^{2}-Q^{\prime 2}\right) s_{\mathrm{w}}^{2} f\left(\frac{M_{Z}}{N}\right)\right. \\ &+\left(Q-Q^{\prime}\right)\left(Q+Q^{\prime}-2 Y\right)\left[f\left(\frac{M_{N}}{M^{\prime}}\right)-f\left(\frac{M_{z}}{M^{\prime}}\right)\right] \\ & \text { with } f(r) \xrightarrow{r \rightarrow 0}-2 \pi r \end{aligned}$
	3/2	S		729	
		F		712	
$\underline{5}$	0	S	9.4	166	
		F	10	166	The neutral component is the lightest
	1	S		537	
		F		534	
	2	S		906	- DM
		F		900	$\uparrow_{\triangle M}$
7	0	S	25	166	$\mathrm{DM}^{0} \xrightarrow{\text { a }}$

The ideal DM candidate is
weakly in tral, stable

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.	List all allowed SM couplings:
$\underline{2}$	1/2	S		348	EL	1/2-11/2
		F	1.0	342	$E H \leftarrow$	e.g. $\mathcal{X} E H$
$\underline{3}$	0	S	2.5	166	$H H^{*}$	$\underline{1}$
		F	2.7	166	LH	\mathcal{X}
	1	S		540	$H H, L H$	$\cdots \cdots h$
		F		526	LH	
$\underline{4}$	1/2	S		353	$H H H^{*}$	1/2-1/2 1/2-1/2
		F		347	$\left(L H H^{*}\right) \leftarrow$	e.g. $\mathcal{X} L H H^{*}$
	$3 / 2$	S		729	$H H H$	$\stackrel{4}{4} \stackrel{2}{2} \quad \underline{2} \quad \underline{2}$
		F		712	(LHH)	dim=5 operator, induces
$\underline{5}$	0	S	9.4	166	$\left(H H H^{*} H^{*}\right)$	
		F	10	166	-	for $\Lambda \sim M_{\text {Pl }}$
	1	S		537	$\left(H H^{*} H^{*} H^{*}\right)$	
		F		534	-	
	2	S		906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$	
		F		900	-	
7	0	S	25	166	-	

The ideal DM candidate is
weakly in stral, stable

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.	List all allowed SM couplings:
$\underline{2}$	1/2	S		348	EL	1/2-11/2
		F	1.0	342	$E H \leftarrow$	-.g. $\mathcal{X} E H$
$\underline{3}$	0	S	2.5	166	$H H^{*}$	$\underline{2} 12$
		F	2.7	166	LH	\mathcal{X}
	1	S		540	$H H, L H$	$\chi \cdots-h$
		F		526	LH	
$\underline{4}$	1/2	S		353	$H H H^{*}$	1/2-1/2 1/2-1/2
		F		347	$\left(L H H^{*}\right) \leftarrow$	e.g. $\mathcal{X} L H H^{*}$
	$3 / 2$	S		729	$H H H$	$\begin{array}{llll} 4 & 2 & 2 & 2 \end{array}$
		F		712	$(L H H)$	dim=5 operator, induces
$\underline{5}$	0	S	9.4	166	$\left(H H H^{*} H^{*}\right)$	$\tau \sim \Lambda^{2} \mathrm{TeV}^{-3} \ll t_{\text {universe }}$
		F	10	166	-	for $\mathrm{A} \sim \mathrm{M}_{\mathrm{Pl}}$
	1	S		537	$\left(H H^{*} H^{*} H^{*}\right)$	
		F		534	-	No allowed decay!
	2	S		906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$	Automatically
		F		900	-	
7	0	S	25	166	-	

The ideal DM candidate is
weakly in

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
$\underline{\underline{2}}$	1/2	S		348	EL
		F	1.0	342	EH
$\underline{3}$	0	S	2.5	166	$H H^{*}$
		F	2.7	166	LH
	1	S		540	$H H, L H$
		F		526	LH
$\underline{4}$	1/2	S		353	$H H H^{*}$
		F		347	$\left(L H H^{*}\right)$
	$3 / 2$	S		729	$H H H$
		F		712	$(L H H)$
$\underline{5}$	0	S	9.4	166	$\left(H H H^{*} H^{*}\right)$
		F	10	166	-
	1	S		537	$\left(H H^{*} H^{*} H^{*}\right)$
		F		534	-
	2	S		906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$
		F		900	-
7	0	S	25	166	-

The ideal DM candidate is

$S U(2){ }_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
$\underline{2}$	1/2	S		348	EL
		F	1.0	342	EH
$\underline{3}$	0	S	2.5	166	$H H^{*}$
		F	2.7	166	LH
	1	S		540	$H H, L H$
		F		526	LH
$\underline{4}$	1/2	S		353	$H H H^{*}$
		F		347	$\left(L H H^{*}\right)$
	$3 / 2$	S		729	H H H
		F		712	(LHH)
5	0	S	9.4	166	$\left(H H H^{*} H^{*}\right)$
		F	10	166	-
	1	S		537	$\left(H H^{*} H^{*} H^{*}\right)$
		F		534	-
	2	S		906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$
		F		900	-
7	0	S	25	166	-

$$
\begin{aligned}
& \sigma \simeq G_{F}^{2} M_{\mathcal{N}}^{2} Y^{2} \underset{\substack{\text { coodman } \\
\text { Witien } \\
1085}}{\substack{\text { n }}} \\
& \gg \text { present bounds } \\
& \text { e.g. Xenon } \\
& \text { need } Y=0
\end{aligned}
$$

The ideal DM candidate is
weakly in

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
$\underline{\underline{2}}$	1/2	S		348	EL
		F	1.0	342	EH
$\underline{3}$	0	S	2.5	166	$H H^{*}$
		F	2.7	166	LH
	1	S		540	$H H, L H$
		F		526	LH
$\underline{4}$	1/2	S		353	$H H H^{*}$
		F		347	$\left(L H H^{*}\right)$
	$3 / 2$	S		729	$H H H$
		F		712	$(L H H)$
$\underline{5}$	0	S	9.4	166	$\left(H H H^{*} H^{*}\right)$
		F	10	166	-
	1	S		537	$\left(H H^{*} H^{*} H^{*}\right)$
		F		534	-
	2	S		906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$
		F		900	-
7	0	S	25	166	-

The ideal DM candidate is
weakly in

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
2	1/2	S		348	EL
		F	1.0	342	EH
$\underline{3}$	0	S	2.5	166	$H H^{*}$
		F	2.7	166	LH
	1	S		540	HH,LH
		F		526	LH
$\underline{4}$	1/2	S		353	HHH*
		F		347	$\left(L H H^{*}\right)$
	$3 / 2$	S		729	HHH
		F		712	(LHH)
$\underline{5}$	0	S	9.4	166	$\left(H H H^{*} H^{*}\right)$
		F	10	166	-
	1	S		537	$\left(H H^{*} H^{*} H^{*}\right)$
		F		534	-
	2	S		906	$H^{*} H^{*} H^{*} H^{*}$
		F		900	-
7	0	S	25	166	-

The ideal DM candidate is
weakly in

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
2	1/2	S		348	EL
		F	1.0	342	EH
$\underline{3}$	0	S	2.5	166	$H H^{*}$
		F	2.7	166	LH
	1	S		540	HH, LH
		F		526	LH
$\underline{4}$	1/2	S		353	$H H H^{*}$
		F		347	$\left(L H H^{*}\right)$
	3/2	S		729	H H H
		F		712	(LHH)
5	0	S	9.4	166	$\left(H H H^{*} H^{*}\right)$
		F	10	166	-
	1	S		537	$\left(H H^{*} H^{*} H^{*}\right)$
		F		534	-
	2	S		906	$H^{*} H^{*} H^{*} H^{*}$
		F		900	-
7	0	S	25	166	-

The ideal DM candidate is
weakly

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
2	1/2	S		348	EL
		F	1.0	342	EH
$\underline{3}$	0	S	2.5	166	$H H^{*}$
		F	2.7	166	LH
	1	S		540	HH, LH
		F		526	LH
$\underline{4}$	1/2	S		353	$H H H^{*}$
		F		347	(LHH*)
	3/2	S		729	HHH
		F		712	(LHH)
$\underline{5}$	0	S	9.4	166	$\left(H H H^{*} H^{*}\right)$
		F	10	166	-
	1	S		537	$H H^{*} H^{*} H^{*}$
		F		534	-
	2	S		906	$\left.H^{*} H^{*} H^{*} H^{*}\right)$
		F		900	-
7	0	S	25	166	-

We have a winner!

A fermionic $S U(2)_{L}$ quintuplet with $Y=0$ provides a DM candidate with $M=10 \mathrm{TeV}$, which is fully successful:

- neutral
- automatically stable and not yet discovered by DM searches.

A scalar $S U(2)_{L}$ eptaplet with $Y=0$ also does.
(Other candidates can be cured via non-minimalities.)

Asymmetric Dapk Natter

Nussinov 1985 D.B.Kaplan 199

Farrar, Zaharijas 2005
Zurek 2009

+ many many >2009

Direct detection seems to prefer low mass DM (few GeV)

Ω_{DM}
 Ω_{B}

Ω_{DM} Just coincidence? Or: signal of a link?

Possibly a common production mechanism:
Ω_{DM} Just coincidence? Or: signal of a link? Ω_{B}

Possibly a common production mechanism:

Baryogenesis:
$\eta_{\mathrm{B}}=\frac{n_{\mathrm{B}}-n_{\overline{\mathrm{B}}}}{n_{\gamma}}=6 \cdot 10^{-10}$
BBN, CMB...
$\Omega_{\mathrm{B}} \propto m_{\mathrm{B}} \eta_{\mathrm{B}}$

'Darko'genesis:

$\eta_{\mathrm{DM}}=\frac{n_{\mathrm{DM}}-n_{\overline{\mathrm{DM}}}}{n_{\gamma}} \stackrel{?}{=} \eta_{\mathrm{B}}$
$\Omega_{\mathrm{DM}} \propto m_{\mathrm{DM}} \eta_{\mathrm{DM}}$
Ω_{DM} Just coincidence? Or: signal of a link? Ω_{B}

Possibly a common production mechanism:

Baryogenesis:
$\eta_{\mathrm{B}}=\frac{n_{\mathrm{B}}-n_{\overline{\mathrm{B}}}}{n_{\gamma}}=6 \cdot 10^{-10}$
BBN, CMB...
$\Omega_{\mathrm{B}} \propto m_{\mathrm{B}} \eta_{\mathrm{B}}$

'Darko'genesis:

$\eta_{\mathrm{DM}}=\frac{n_{\mathrm{DM}}-n_{\overline{\mathrm{DM}}}}{n_{\gamma}} \stackrel{?}{=} \eta_{\mathrm{B}}$
$\Omega_{\mathrm{DM}} \propto m_{\mathrm{DM}} \eta_{\mathrm{DM}}$

Is this the DM of DAMA, CoGeNT, CRESST?!?
Ω_{DM}

Just coincidence? Or: signal of a link?

Ω_{B}
Possibly a common production mechanism:

Baryogenesis:

$$
\eta_{\mathrm{B}}=\frac{n_{\mathrm{B}}-n_{\overline{\mathrm{B}}}}{n_{\gamma}}=6 \cdot 10^{-10}
$$

BBN, CMB...

$$
\eta_{\mathrm{DM}}=\frac{n_{\mathrm{DM}}-n_{\overline{\mathrm{DM}}}^{\stackrel{?}{=}} n_{\mathrm{B}}}{n_{\gamma}}
$$

A variety of specific models/ideas:
transferring or co-genesis

cfr J. March-Russell

DM stores the anti-B number
via. leptogenesis
connection to neutrino masses

Provided:

- an initial asymmetry
- strong enough annihilations

$$
\Omega_{\mathrm{x}} \simeq \frac{m_{\mathrm{x}} s}{\rho_{\text {crit }}} \eta_{0}
$$

Provided:

- an initial asymmetry

The relic abundance is determined by η_{0} and m_{X}.

Provided:

- an initial asymmetry

Provided:

- an initial asymmetry

The relic abundance is determined by η_{0} and m_{X}.

Cirelli,

A small $\mathrm{DM} / \overline{\mathrm{DM}}$ mass splitting induces DM m $\overline{\mathrm{DM}}$ oscillations.

A small $\mathrm{DM} / \overline{\mathrm{DM}}$ mass splitting induces DM m $\overline{\mathrm{DM}}$ oscillations.

Asymmetric 'freeze-out'

The correct Ω_{DM} can not be obtained.

A small $\mathrm{DM} / \overline{\mathrm{DM}}$ mass splitting induces DM m $\overline{\mathrm{DM}}$ oscillations.

Asymmetric 'freeze-out'
Oscillations repopulate $\overline{\mathrm{DM}}$ Annihilations restart

A small $\mathrm{DM} / \overline{\mathrm{DM}}$ mass splitting induces DM m $\overline{\mathrm{DM}}$ oscillations.

Asymmetric 'freeze-out'
Oscillations repopulate $\overline{\mathrm{DM}}$ Annihilations restart

Temporary 'freeze-out’

A small $\mathrm{DM} / \overline{\mathrm{DM}}$ mass splitting induces DM m $\overline{\mathrm{DM}}$ oscillations.

Asymmetric 'freeze-out'
Oscillations repopulate $\overline{\mathrm{DM}}$ Annihilations restart

Temporary 'freeze-out'

A small $\mathrm{DM} / \overline{\mathrm{DM}}$ mass splitting induces DM m $\overline{\mathrm{DM}}$ oscillations.

Asymmetric 'freeze-out'
Oscillations repopulate $\overline{\mathrm{DM}}$ Annihilations restart

Temporary ‘freeze-out’

A small $\mathrm{DM} / \overline{\mathrm{DM}}$ mass splitting induces DM ma $\overline{\mathrm{DM}}$ oscillations.

Asymmetric 'freeze-out'
Oscillations repopulate $\overline{\mathrm{DM}}$ Annihilations restart

Temporary ‘freeze-out’

Final freeze-out

'sechluaded Dank: Matter

Pospelov, Ritz, Voloshin 200ry Arkani-Hamed, Finkbeiner, Slatyer, Weiner 2008

+ many many many >2009

Mei motiv tion

Are these signals of Dark Matter?

YFS: few TeV, leptophilic DM

with huge $\langle\sigma v\rangle \approx 10^{-23} \mathrm{~cm}^{3} / \mathrm{sec}$

Are these signals of Dark Matter?
Y ISS: few TeV, leptophilic DM
with huge $\langle\sigma v\rangle \approx 10^{-23} \mathrm{~cm}^{3} / \mathrm{sec}$
NTO: a formidable 'background' for future searches

Basic ingredients:

χ Dark Matter particle, decoupled from SM, mass $M \sim 700+\mathrm{GeV}$
ϕ new gauge boson ("Dark photon"), couples only to DM, with typical gauge strength, $m_{\phi} \sim$ few GeV - mediates Sommerfeld enhancement of $\chi \bar{\chi}$ annihilation: $\alpha M / m_{V} \gtrsim 1$ fulfilled

- decays only into $e^{+} e^{-}$or $\mu^{+} \mu^{-}$ for kinematical limit

Basic ingredients:

χ Dark Matter particle, decoupled from SM, mass $M \sim 700+\mathrm{GeV}$
ϕ new gauge boson ("Dark photon"), couples only to DM, with typical gauge strength, $m_{\phi} \sim$ few GeV - mediates Sommerfeld enhancement of $\chi \bar{\chi}$ annihilation: $\alpha M / m_{V} \gtrsim 1$ fulfilled

- decays only into $e^{+} e^{-}$or $\mu^{+} \mu^{-}$ for kinematical limit

Production mechanism:

just thermal freeze-out of these annihilations

Basic ingredients:

χ Dark Matter particle, decoupled from SM, mass $M \sim 700+\mathrm{GeV}$
ϕ new gauge boson ("Dark photon"), couples only to DM, with typical gauge strength, $m_{\phi} \sim$ few GeV - mediates Sommerfeld enhancement of $\chi \bar{\chi}$ annihilation: $\alpha M / m_{V} \gtrsim 1$ fulfilled

- decays only into $e^{+} e^{-}$or $\mu^{+} \mu^{-}$ for kinematical limit

Extras:

χ is a multiplet of states and ϕ is non-abelian gauge boson: splitting $\delta M \sim 200 \mathrm{KeV}$ (via loops of non-abelian bosons)

- inelastic scattering explains DAMA
- eXcited state decay $\chi \chi \rightarrow \chi \chi^{*}$ explains INT円GRAL

$$
\hookrightarrow e^{+} e^{-}
$$

pioneering: Secluded DM, U(1) Stückelberg extension of SM

Axion Portal: ϕ is pseudoscalar axion-like
 Nomura, Thaler 0810.5397
singlet-extended UED: χ is KK RNnu, ϕ is an extra bulk singlet Bai, Han 0811.038 7
split UED: χ annihilates only to leptons because quarks are on another brane Park, Shu 0901.0720

2 DM carrying lepton number: χ charged under $U(1)_{L_{\mu}-L_{\tau}}, \phi$ gauge boson Cirelli, Kadastik, Raidal, Strumia 0809.2409 Fox, Poppitz $0811.0399 \quad\left(m_{\phi} \sim\right.$ tens GeV)
New Heavy Lepton: χ annihilates into Ξ that carries lepton number and decays weakly (\sim TeV)
Phalen, Pierce, Weiner 0901.3165

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Sommerfeld, Ann.Phys. 403, 25 ry (1931)

Hisano et al., 2003-2006: in part. hep-ph/0307216, 0412403, 0610249

Cirelli, Tamburini, Strumia 0706.4071
Arkani-Hamed et al., 0810.0ヶ13

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

A classical analogy:

$$
\sigma_{0}=\pi R^{2}
$$

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

A classical analogy:

$$
\begin{aligned}
& \sigma_{0}=\pi R^{2} \\
& \sigma=\pi R^{2}\left(1+\frac{2 G_{N} M / R}{v^{2}}\right) \\
& \text { with } v_{\text {esc }}^{2}=2 G_{N} M / R \\
& \text { For } v \gg v_{\text {esc }} \text { then } \sigma \rightarrow \sigma_{0} \\
& \text { For } v \ll v_{\text {esc }} \text { then } \sigma \gg \sigma_{0} \\
& \text { i.e. } E_{\text {kin }}<U_{\text {pot (i.e. the deforming potential }} \text { is not negligible) }
\end{aligned}
$$

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Cirelli, Strumia, Tamburini 0706.4071
$\psi(\vec{r})$ wave function of two DM particles $\left(\vec{r}=\vec{r}_{1}-\vec{r}_{2}\right)$ obeys (reduced) Schrödinger equation:

$$
-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi \underbrace{V}_{\text {velocity }} \psi
$$

At $r=0$: annihilation

$$
\left.\sigma_{\text {ann }} \propto \psi \Gamma \psi \quad \text { with } \Gamma \text { such that }\langle\mathrm{DMDM}| \Gamma \mid \text { final }\right\rangle
$$

Sommerfeld enhancement:

$$
R=\frac{\sigma_{\mathrm{ann}}}{\sigma_{\mathrm{ann}}^{0}}=\left|\frac{\psi(\infty)}{\psi(0)}\right|^{2}
$$

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:

$-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi$
with $V=-\frac{\alpha}{r} e^{-m_{V} r}$
parameters are: $\quad \alpha, \nu, m_{V}, M \quad\left(\alpha=\frac{g^{2}}{4 \pi} \approx \frac{1}{137}\right)$

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:
Cirelli, Strumia, Tamburini 0706.4071

$$
\begin{array}{r}
-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi \\
\text { with } \quad V=-\frac{\alpha}{r} e^{-m_{V} r}
\end{array}
$$ parameters are: α, ν, m_{V}, M R depends on: α / ν and $\alpha M / m_{V}$

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:
$-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi$
with $V=-\frac{\alpha}{r} e^{-m_{V} r}$ parameters are: α, ν, m_{V}, M R depends on: α / ν and $\alpha M / m_{V}$ The effect is relevant for:
$\alpha / \nu \gtrsim 1$ i.e. small velocities i.e today but not at f.o.

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:

$$
\begin{array}{r}
-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi \\
\text { with } \quad V=-\frac{\alpha}{r} e^{-m_{V} r}
\end{array}
$$ parameters are: α, ν, m_{V}, M R depends on: α / ν and $\alpha M / m_{V}$ The effect is relevant for:

$\alpha / \nu \gtrsim 1$ i.e. small velocities i.e today but not at f.o.

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:
$-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi$
with $V=-\frac{\alpha}{r} e^{-m_{V} r}$
parameters are: α, ν, m_{V}, M
R depends on: α / ν and $\alpha M / m_{V}$
The effect is relevant for:
$\alpha / \nu \gtrsim 1$ i.e. small velocities i.e today but not at f.o.

Cirelli, Strumia, Tamburini 0706.40\%1 Cirelli, Franceschini, Strumia 0802.33ヶ8

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:
$-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi$
with $V=-\frac{\alpha}{r} e^{-m_{V} r}$
parameters are: α, ν, m_{V}, M
R depends on: α / ν and $\alpha M / m_{V}$
The effect is relevant for:
$\alpha / \nu \gtrsim 1$ i.e. small velocities i.e today but not at f.o.

Cirelli, Strumia, Tamburini Or06.4071 Cirelli, Franceschini, Strumia 0802.33ヶ8

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:

$$
\begin{array}{r}
-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi \\
\text { with } \quad V=-\frac{\alpha}{r} e^{-m_{V} r}
\end{array}
$$ parameters are: α, ν, m_{V}, M R depends on: α / ν and $\alpha M / m_{V}$ The effect is relevant for:

$\alpha / \nu \gtrsim 1$ i.e. small velocities i.e today but not at f.o.

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:

$$
\begin{array}{r}
-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi \\
\text { with } \quad V=-\frac{\alpha}{r} e^{-m_{V} r}
\end{array}
$$

parameters are: α, ν, m_{V}, M R depends on: α / ν and $\alpha M / m_{V}$ The effect is relevant for:
$\alpha / \nu \gtrsim 1$ i.e. small velocities i.e today but not at f.o.
$\alpha M / m_{V} \gtrsim 1$ i.e. long range forces for SM weak: $\quad m_{V} \rightarrow M_{W, Z}$

$$
M \rightarrow \text { multi- } \mathrm{TeV}
$$

for 1 TeV DM: need $m_{V} \rightarrow \mathrm{GeV}$

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:

$$
\begin{array}{r}
-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi \\
\text { with } \quad V=-\frac{\alpha}{r} e^{-m_{V} r}
\end{array}
$$

parameters are: α, ν, m_{V}, M R depends on: α / ν and $\alpha M / m_{V}$ The effect is relevant for:
$\alpha / \nu \gtrsim 1$ i.e. small velocities i.e today but not at f.o.
$\alpha M / m_{V} \gtrsim 1$ i.e. long range forces for SM weak: $\quad m_{V} \rightarrow M_{W, Z}$

$$
M \rightarrow \text { multi- } \mathrm{TeV}
$$

for 1 TeV DM: need $m_{V} \rightarrow \mathrm{GeV}$

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:
$-\frac{1}{M} \frac{d^{2} \psi}{d r^{2}}+V \cdot \psi=M \nu^{2} \psi$
with $\quad V=-\frac{\alpha}{r} e^{-m_{V} r}$
parameters are: α, ν, m_{V}, M
R depends on: α / ν and $\alpha M / m_{V}$

The effect is relevant for:
$\alpha / \nu \gtrsim 1$ i.e. small velocities i.e today but not at f.o.
$\alpha M / m_{V} \gtrsim 1$ i.e. long range forces for SM weak: $\quad m_{V} \rightarrow M_{W, Z}$

$$
M \rightarrow \text { multi- } \mathrm{TeV}
$$

for 1 TeV DM: need $m_{V} \rightarrow \mathrm{GeV}$

Cirelli, Strumia, Tamburini Or06.4071 Cirelli, Franceschini, Strumia 0802.33ヶ8

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

In terms of Feynman diagrams:

First order cross section:

Adding a rung to the ladder: $\quad \times\left(\frac{\alpha M}{m_{W}}\right)$

For $\alpha M / m_{V} \gtrsim 1$ the perturbative expansion breaks down, need to resum all orders
i.e.: keep the full interaction potential.

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Yukawa potential:

with

parameters are:

R depends on:
and

The effect is relevant for:
$\alpha / \nu \gtrsim 1$ i.e. small velocities i.e today but not at f.o.
$\alpha M / m_{V} \gtrsim 1$ i.e. long range forces for SM weak: $\quad m_{V} \rightarrow M_{W, Z}$

$$
M \rightarrow \text { multi- } \mathrm{TeV}
$$

for 1 TeV DM: need $m_{V} \rightarrow \mathrm{GeV}$

Non-standard DM is non-dead and non-standing-still

Non-standard DM is alive and kicking *

Non-standard DM is alive and kicking *

* It's fair to say that,
like any newborn,
it builds on the expertise
of giants,
i.e. 'old' SuSy DM.

Non-standard DM is alive and kicking *

* It's fair to say that, like any newborn, it builds on the expertise of giants,
i.e. 'old' SuSy DM.

Mostly data-driven, but not only

- PAMELA, FERMI, HMSS
- DAMA, CoGeNT, CRIGSST
- DM simulations ?

Non-standard DM is alive and kicking *

* It's fair to say that, like any newborn, it builds on the expertise of giants, i.e. 'old' SuSy DM.

Mostly data-driven, but not only

- PAMELA, FERMI, HESS
- DAMA, CoGeNI, CRESST
- DM simulations?

I picked 3 recent ideas:

1. Minimal DM: the simplest, so-far-overlooked WIMP possibility?
2. Asymmetric DM: a paradigm of a 'new' production mechanism?
3. Secluded DM: the harbinger of a rich dark sector?
but the list of new interesting directions is bottomless.
